NarratoAI/webui/components/basic_settings.py
linyq dd59d5295d feat: 更新作者信息并增强API配置验证功能
在基础设置中新增API密钥、基础URL和模型名称的验证功能,确保用户输入的配置有效性,提升系统的稳定性和用户体验。
2025-07-07 15:40:34 +08:00

693 lines
26 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import traceback
import streamlit as st
import os
from app.config import config
from app.utils import utils
from loguru import logger
def validate_api_key(api_key: str, provider: str) -> tuple[bool, str]:
"""验证API密钥格式"""
if not api_key or not api_key.strip():
return False, f"{provider} API密钥不能为空"
# 基本长度检查
if len(api_key.strip()) < 10:
return False, f"{provider} API密钥长度过短请检查是否正确"
return True, ""
def validate_base_url(base_url: str, provider: str) -> tuple[bool, str]:
"""验证Base URL格式"""
if not base_url or not base_url.strip():
return True, "" # base_url可以为空
base_url = base_url.strip()
if not (base_url.startswith('http://') or base_url.startswith('https://')):
return False, f"{provider} Base URL必须以http://或https://开头"
return True, ""
def validate_model_name(model_name: str, provider: str) -> tuple[bool, str]:
"""验证模型名称"""
if not model_name or not model_name.strip():
return False, f"{provider} 模型名称不能为空"
return True, ""
def show_config_validation_errors(errors: list):
"""显示配置验证错误"""
if errors:
for error in errors:
st.error(error)
def render_basic_settings(tr):
"""渲染基础设置面板"""
with st.expander(tr("Basic Settings"), expanded=False):
config_panels = st.columns(3)
left_config_panel = config_panels[0]
middle_config_panel = config_panels[1]
right_config_panel = config_panels[2]
with left_config_panel:
render_language_settings(tr)
render_proxy_settings(tr)
with middle_config_panel:
render_vision_llm_settings(tr) # 视频分析模型设置
with right_config_panel:
render_text_llm_settings(tr) # 文案生成模型设置
def render_language_settings(tr):
st.subheader(tr("Proxy Settings"))
"""渲染语言设置"""
system_locale = utils.get_system_locale()
i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n")
locales = utils.load_locales(i18n_dir)
display_languages = []
selected_index = 0
for i, code in enumerate(locales.keys()):
display_languages.append(f"{code} - {locales[code].get('Language')}")
if code == st.session_state.get('ui_language', system_locale):
selected_index = i
selected_language = st.selectbox(
tr("Language"),
options=display_languages,
index=selected_index
)
if selected_language:
code = selected_language.split(" - ")[0].strip()
st.session_state['ui_language'] = code
config.ui['language'] = code
def render_proxy_settings(tr):
"""渲染代理设置"""
# 获取当前代理状态
proxy_enabled = config.proxy.get("enabled", False)
proxy_url_http = config.proxy.get("http")
proxy_url_https = config.proxy.get("https")
# 添加代理开关
proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled)
# 保存代理开关状态
# config.proxy["enabled"] = proxy_enabled
# 只有在代理启用时才显示代理设置输入框
if proxy_enabled:
HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http)
HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https)
if HTTP_PROXY and HTTPS_PROXY:
config.proxy["http"] = HTTP_PROXY
config.proxy["https"] = HTTPS_PROXY
os.environ["HTTP_PROXY"] = HTTP_PROXY
os.environ["HTTPS_PROXY"] = HTTPS_PROXY
# logger.debug(f"代理已启用: {HTTP_PROXY}")
else:
# 当代理被禁用时,清除环境变量和配置
os.environ.pop("HTTP_PROXY", None)
os.environ.pop("HTTPS_PROXY", None)
# config.proxy["http"] = ""
# config.proxy["https"] = ""
def test_vision_model_connection(api_key, base_url, model_name, provider, tr):
"""测试视觉模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
import requests
if provider.lower() == 'gemini':
# 原生Gemini API测试
try:
# 构建请求数据
request_data = {
"contents": [{
"parts": [{"text": "直接回复我文本'当前网络可用'"}]
}],
"generationConfig": {
"temperature": 1.0,
"topK": 40,
"topP": 0.95,
"maxOutputTokens": 100,
},
"safetySettings": [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
}
]
}
# 构建请求URL
api_base_url = base_url or "https://generativelanguage.googleapis.com/v1beta"
url = f"{api_base_url}/models/{model_name}:generateContent?key={api_key}"
# 发送请求
response = requests.post(
url,
json=request_data,
headers={"Content-Type": "application/json"},
timeout=30
)
if response.status_code == 200:
return True, tr("原生Gemini模型连接成功")
else:
return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}"
elif provider.lower() == 'gemini(openai)':
# OpenAI兼容的Gemini代理测试
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
test_url = f"{base_url.rstrip('/')}/chat/completions"
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
response = requests.post(test_url, headers=headers, json=test_data, timeout=10)
if response.status_code == 200:
return True, tr("OpenAI兼容Gemini代理连接成功")
else:
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: {str(e)}"
elif provider.lower() == 'narratoapi':
try:
# 构建测试请求
headers = {
"Authorization": f"Bearer {api_key}"
}
test_url = f"{base_url.rstrip('/')}/health"
response = requests.get(test_url, headers=headers, timeout=10)
if response.status_code == 200:
return True, tr("NarratoAPI is available")
else:
return False, f"{tr('NarratoAPI is not available')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('NarratoAPI is not available')}: {str(e)}"
else:
from openai import OpenAI
try:
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
response = client.chat.completions.create(
model=model_name,
messages=[
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}],
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg"
},
},
{"type": "text", "text": "回复我网络可用即可"},
],
},
],
)
if response and response.choices:
return True, tr("QwenVL model is available")
else:
return False, tr("QwenVL model returned invalid response")
except Exception as e:
# logger.debug(api_key)
# logger.debug(base_url)
# logger.debug(model_name)
return False, f"{tr('QwenVL model is not available')}: {str(e)}"
def render_vision_llm_settings(tr):
"""渲染视频分析模型设置"""
st.subheader(tr("Vision Model Settings"))
# 视频分析模型提供商选择
vision_providers = ['Siliconflow', 'Gemini', 'Gemini(OpenAI)', 'QwenVL', 'OpenAI']
saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower()
saved_provider_index = 0
for i, provider in enumerate(vision_providers):
if provider.lower() == saved_vision_provider:
saved_provider_index = i
break
vision_provider = st.selectbox(
tr("Vision Model Provider"),
options=vision_providers,
index=saved_provider_index
)
vision_provider = vision_provider.lower()
config.app["vision_llm_provider"] = vision_provider
st.session_state['vision_llm_providers'] = vision_provider
# 获取已保存的视觉模型配置
# 处理特殊的提供商名称映射
if vision_provider == 'gemini(openai)':
vision_config_key = 'vision_gemini_openai'
else:
vision_config_key = f'vision_{vision_provider}'
vision_api_key = config.app.get(f"{vision_config_key}_api_key", "")
vision_base_url = config.app.get(f"{vision_config_key}_base_url", "")
vision_model_name = config.app.get(f"{vision_config_key}_model_name", "")
# 渲染视觉模型配置输入框
st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password")
# 根据不同提供商设置默认值和帮助信息
if vision_provider == 'gemini':
st_vision_base_url = st.text_input(
tr("Vision Base URL"),
value=vision_base_url or "https://generativelanguage.googleapis.com/v1beta",
help=tr("原生Gemini API端点默认: https://generativelanguage.googleapis.com/v1beta")
)
st_vision_model_name = st.text_input(
tr("Vision Model Name"),
value=vision_model_name or "gemini-2.0-flash-exp",
help=tr("原生Gemini模型默认: gemini-2.0-flash-exp")
)
elif vision_provider == 'gemini(openai)':
st_vision_base_url = st.text_input(
tr("Vision Base URL"),
value=vision_base_url or "https://generativelanguage.googleapis.com/v1beta/openai",
help=tr("OpenAI兼容的Gemini代理端点如: https://your-proxy.com/v1")
)
st_vision_model_name = st.text_input(
tr("Vision Model Name"),
value=vision_model_name or "gemini-2.0-flash-exp",
help=tr("OpenAI格式的Gemini模型名称默认: gemini-2.0-flash-exp")
)
elif vision_provider == 'qwenvl':
st_vision_base_url = st.text_input(
tr("Vision Base URL"),
value=vision_base_url,
help=tr("Default: https://dashscope.aliyuncs.com/compatible-mode/v1")
)
st_vision_model_name = st.text_input(
tr("Vision Model Name"),
value=vision_model_name or "qwen-vl-max-latest",
help=tr("Default: qwen-vl-max-latest")
)
else:
st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url)
st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name)
# 在配置输入框后添加测试按钮
if st.button(tr("Test Connection"), key="test_vision_connection"):
# 先验证配置
test_errors = []
if not st_vision_api_key:
test_errors.append("请先输入API密钥")
if not st_vision_model_name:
test_errors.append("请先输入模型名称")
if test_errors:
for error in test_errors:
st.error(error)
else:
with st.spinner(tr("Testing connection...")):
try:
success, message = test_vision_model_connection(
api_key=st_vision_api_key,
base_url=st_vision_base_url,
model_name=st_vision_model_name,
provider=vision_provider,
tr=tr
)
if success:
st.success(message)
else:
st.error(message)
except Exception as e:
st.error(f"测试连接时发生错误: {str(e)}")
logger.error(f"视频分析模型连接测试失败: {str(e)}")
# 验证和保存视觉模型配置
validation_errors = []
config_changed = False
# 验证API密钥
if st_vision_api_key:
is_valid, error_msg = validate_api_key(st_vision_api_key, f"视频分析({vision_provider})")
if is_valid:
config.app[f"{vision_config_key}_api_key"] = st_vision_api_key
st.session_state[f"{vision_config_key}_api_key"] = st_vision_api_key
config_changed = True
else:
validation_errors.append(error_msg)
# 验证Base URL
if st_vision_base_url:
is_valid, error_msg = validate_base_url(st_vision_base_url, f"视频分析({vision_provider})")
if is_valid:
config.app[f"{vision_config_key}_base_url"] = st_vision_base_url
st.session_state[f"{vision_config_key}_base_url"] = st_vision_base_url
config_changed = True
else:
validation_errors.append(error_msg)
# 验证模型名称
if st_vision_model_name:
is_valid, error_msg = validate_model_name(st_vision_model_name, f"视频分析({vision_provider})")
if is_valid:
config.app[f"{vision_config_key}_model_name"] = st_vision_model_name
st.session_state[f"{vision_config_key}_model_name"] = st_vision_model_name
config_changed = True
else:
validation_errors.append(error_msg)
# 显示验证错误
show_config_validation_errors(validation_errors)
# 如果配置有变化且没有验证错误,保存到文件
if config_changed and not validation_errors:
try:
config.save_config()
if st_vision_api_key or st_vision_base_url or st_vision_model_name:
st.success(f"视频分析模型({vision_provider})配置已保存")
except Exception as e:
st.error(f"保存配置失败: {str(e)}")
logger.error(f"保存视频分析配置失败: {str(e)}")
def test_text_model_connection(api_key, base_url, model_name, provider, tr):
"""测试文本模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
import requests
try:
# 构建统一的测试请求遵循OpenAI格式
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# 特殊处理Gemini
if provider.lower() == 'gemini':
# 原生Gemini API测试
try:
# 构建请求数据
request_data = {
"contents": [{
"parts": [{"text": "直接回复我文本'当前网络可用'"}]
}],
"generationConfig": {
"temperature": 1.0,
"topK": 40,
"topP": 0.95,
"maxOutputTokens": 100,
},
"safetySettings": [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
}
]
}
# 构建请求URL
api_base_url = base_url or "https://generativelanguage.googleapis.com/v1beta"
url = f"{api_base_url}/models/{model_name}:generateContent?key={api_key}"
# 发送请求
response = requests.post(
url,
json=request_data,
headers={"Content-Type": "application/json"},
timeout=30
)
if response.status_code == 200:
return True, tr("原生Gemini模型连接成功")
else:
return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}"
elif provider.lower() == 'gemini(openai)':
# OpenAI兼容的Gemini代理测试
test_url = f"{base_url.rstrip('/')}/chat/completions"
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
response = requests.post(test_url, headers=headers, json=test_data, timeout=10)
if response.status_code == 200:
return True, tr("OpenAI兼容Gemini代理连接成功")
else:
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}"
else:
test_url = f"{base_url.rstrip('/')}/chat/completions"
# 构建测试消息
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
# 发送测试请求
response = requests.post(
test_url,
headers=headers,
json=test_data,
)
# logger.debug(model_name)
# logger.debug(api_key)
# logger.debug(test_url)
if response.status_code == 200:
return True, tr("Text model is available")
else:
return False, f"{tr('Text model is not available')}: HTTP {response.status_code}"
except Exception as e:
logger.error(traceback.format_exc())
return False, f"{tr('Connection failed')}: {str(e)}"
def render_text_llm_settings(tr):
"""渲染文案生成模型设置"""
st.subheader(tr("Text Generation Model Settings"))
# 文案生成模型提供商选择
text_providers = ['OpenAI', 'Siliconflow', 'DeepSeek', 'Gemini', 'Gemini(OpenAI)', 'Qwen', 'Moonshot']
saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower()
saved_provider_index = 0
for i, provider in enumerate(text_providers):
if provider.lower() == saved_text_provider:
saved_provider_index = i
break
text_provider = st.selectbox(
tr("Text Model Provider"),
options=text_providers,
index=saved_provider_index
)
text_provider = text_provider.lower()
config.app["text_llm_provider"] = text_provider
# 获取已保存的文本模型配置
text_api_key = config.app.get(f"text_{text_provider}_api_key")
text_base_url = config.app.get(f"text_{text_provider}_base_url")
text_model_name = config.app.get(f"text_{text_provider}_model_name")
# 渲染文本模型配置输入框
st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password")
# 根据不同提供商设置默认值和帮助信息
if text_provider == 'gemini':
st_text_base_url = st.text_input(
tr("Text Base URL"),
value=text_base_url or "https://generativelanguage.googleapis.com/v1beta",
help=tr("原生Gemini API端点默认: https://generativelanguage.googleapis.com/v1beta")
)
st_text_model_name = st.text_input(
tr("Text Model Name"),
value=text_model_name or "gemini-2.0-flash-exp",
help=tr("原生Gemini模型默认: gemini-2.0-flash-exp")
)
elif text_provider == 'gemini(openai)':
st_text_base_url = st.text_input(
tr("Text Base URL"),
value=text_base_url or "https://generativelanguage.googleapis.com/v1beta/openai",
help=tr("OpenAI兼容的Gemini代理端点如: https://your-proxy.com/v1")
)
st_text_model_name = st.text_input(
tr("Text Model Name"),
value=text_model_name or "gemini-2.0-flash-exp",
help=tr("OpenAI格式的Gemini模型名称默认: gemini-2.0-flash-exp")
)
else:
st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url)
st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name)
# 添加测试按钮
if st.button(tr("Test Connection"), key="test_text_connection"):
# 先验证配置
test_errors = []
if not st_text_api_key:
test_errors.append("请先输入API密钥")
if not st_text_model_name:
test_errors.append("请先输入模型名称")
if test_errors:
for error in test_errors:
st.error(error)
else:
with st.spinner(tr("Testing connection...")):
try:
success, message = test_text_model_connection(
api_key=st_text_api_key,
base_url=st_text_base_url,
model_name=st_text_model_name,
provider=text_provider,
tr=tr
)
if success:
st.success(message)
else:
st.error(message)
except Exception as e:
st.error(f"测试连接时发生错误: {str(e)}")
logger.error(f"文案生成模型连接测试失败: {str(e)}")
# 验证和保存文本模型配置
text_validation_errors = []
text_config_changed = False
# 验证API密钥
if st_text_api_key:
is_valid, error_msg = validate_api_key(st_text_api_key, f"文案生成({text_provider})")
if is_valid:
config.app[f"text_{text_provider}_api_key"] = st_text_api_key
text_config_changed = True
else:
text_validation_errors.append(error_msg)
# 验证Base URL
if st_text_base_url:
is_valid, error_msg = validate_base_url(st_text_base_url, f"文案生成({text_provider})")
if is_valid:
config.app[f"text_{text_provider}_base_url"] = st_text_base_url
text_config_changed = True
else:
text_validation_errors.append(error_msg)
# 验证模型名称
if st_text_model_name:
is_valid, error_msg = validate_model_name(st_text_model_name, f"文案生成({text_provider})")
if is_valid:
config.app[f"text_{text_provider}_model_name"] = st_text_model_name
text_config_changed = True
else:
text_validation_errors.append(error_msg)
# 显示验证错误
show_config_validation_errors(text_validation_errors)
# 如果配置有变化且没有验证错误,保存到文件
if text_config_changed and not text_validation_errors:
try:
config.save_config()
if st_text_api_key or st_text_base_url or st_text_model_name:
st.success(f"文案生成模型({text_provider})配置已保存")
except Exception as e:
st.error(f"保存配置失败: {str(e)}")
logger.error(f"保存文案生成配置失败: {str(e)}")
# # Cloudflare 特殊配置
# if text_provider == 'cloudflare':
# st_account_id = st.text_input(
# tr("Account ID"),
# value=config.app.get(f"text_{text_provider}_account_id", "")
# )
# if st_account_id:
# config.app[f"text_{text_provider}_account_id"] = st_account_id