import traceback import streamlit as st import os from app.config import config from app.utils import utils from loguru import logger def validate_api_key(api_key: str, provider: str) -> tuple[bool, str]: """验证API密钥格式""" if not api_key or not api_key.strip(): return False, f"{provider} API密钥不能为空" # 基本长度检查 if len(api_key.strip()) < 10: return False, f"{provider} API密钥长度过短,请检查是否正确" return True, "" def validate_base_url(base_url: str, provider: str) -> tuple[bool, str]: """验证Base URL格式""" if not base_url or not base_url.strip(): return True, "" # base_url可以为空 base_url = base_url.strip() if not (base_url.startswith('http://') or base_url.startswith('https://')): return False, f"{provider} Base URL必须以http://或https://开头" return True, "" def validate_model_name(model_name: str, provider: str) -> tuple[bool, str]: """验证模型名称""" if not model_name or not model_name.strip(): return False, f"{provider} 模型名称不能为空" return True, "" def show_config_validation_errors(errors: list): """显示配置验证错误""" if errors: for error in errors: st.error(error) def render_basic_settings(tr): """渲染基础设置面板""" with st.expander(tr("Basic Settings"), expanded=False): config_panels = st.columns(3) left_config_panel = config_panels[0] middle_config_panel = config_panels[1] right_config_panel = config_panels[2] with left_config_panel: render_language_settings(tr) render_proxy_settings(tr) with middle_config_panel: render_vision_llm_settings(tr) # 视频分析模型设置 with right_config_panel: render_text_llm_settings(tr) # 文案生成模型设置 def render_language_settings(tr): st.subheader(tr("Proxy Settings")) """渲染语言设置""" system_locale = utils.get_system_locale() i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n") locales = utils.load_locales(i18n_dir) display_languages = [] selected_index = 0 for i, code in enumerate(locales.keys()): display_languages.append(f"{code} - {locales[code].get('Language')}") if code == st.session_state.get('ui_language', system_locale): selected_index = i selected_language = st.selectbox( tr("Language"), options=display_languages, index=selected_index ) if selected_language: code = selected_language.split(" - ")[0].strip() st.session_state['ui_language'] = code config.ui['language'] = code def render_proxy_settings(tr): """渲染代理设置""" # 获取当前代理状态 proxy_enabled = config.proxy.get("enabled", False) proxy_url_http = config.proxy.get("http") proxy_url_https = config.proxy.get("https") # 添加代理开关 proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled) # 保存代理开关状态 # config.proxy["enabled"] = proxy_enabled # 只有在代理启用时才显示代理设置输入框 if proxy_enabled: HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http) HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https) if HTTP_PROXY and HTTPS_PROXY: config.proxy["http"] = HTTP_PROXY config.proxy["https"] = HTTPS_PROXY os.environ["HTTP_PROXY"] = HTTP_PROXY os.environ["HTTPS_PROXY"] = HTTPS_PROXY # logger.debug(f"代理已启用: {HTTP_PROXY}") else: # 当代理被禁用时,清除环境变量和配置 os.environ.pop("HTTP_PROXY", None) os.environ.pop("HTTPS_PROXY", None) # config.proxy["http"] = "" # config.proxy["https"] = "" def test_vision_model_connection(api_key, base_url, model_name, provider, tr): """测试视觉模型连接 Args: api_key: API密钥 base_url: 基础URL model_name: 模型名称 provider: 提供商名称 Returns: bool: 连接是否成功 str: 测试结果消息 """ import requests if provider.lower() == 'gemini': # 原生Gemini API测试 try: # 构建请求数据 request_data = { "contents": [{ "parts": [{"text": "直接回复我文本'当前网络可用'"}] }], "generationConfig": { "temperature": 1.0, "topK": 40, "topP": 0.95, "maxOutputTokens": 100, }, "safetySettings": [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE" } ] } # 构建请求URL api_base_url = base_url or "https://generativelanguage.googleapis.com/v1beta" url = f"{api_base_url}/models/{model_name}:generateContent?key={api_key}" # 发送请求 response = requests.post( url, json=request_data, headers={"Content-Type": "application/json"}, timeout=30 ) if response.status_code == 200: return True, tr("原生Gemini模型连接成功") else: return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}" except Exception as e: return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}" elif provider.lower() == 'gemini(openai)': # OpenAI兼容的Gemini代理测试 try: headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } test_url = f"{base_url.rstrip('/')}/chat/completions" test_data = { "model": model_name, "messages": [ {"role": "user", "content": "直接回复我文本'当前网络可用'"} ], "stream": False } response = requests.post(test_url, headers=headers, json=test_data, timeout=10) if response.status_code == 200: return True, tr("OpenAI兼容Gemini代理连接成功") else: return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}" except Exception as e: return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: {str(e)}" elif provider.lower() == 'narratoapi': try: # 构建测试请求 headers = { "Authorization": f"Bearer {api_key}" } test_url = f"{base_url.rstrip('/')}/health" response = requests.get(test_url, headers=headers, timeout=10) if response.status_code == 200: return True, tr("NarratoAPI is available") else: return False, f"{tr('NarratoAPI is not available')}: HTTP {response.status_code}" except Exception as e: return False, f"{tr('NarratoAPI is not available')}: {str(e)}" else: from openai import OpenAI try: client = OpenAI( api_key=api_key, base_url=base_url, ) response = client.chat.completions.create( model=model_name, messages=[ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}], }, { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg" }, }, {"type": "text", "text": "回复我网络可用即可"}, ], }, ], ) if response and response.choices: return True, tr("QwenVL model is available") else: return False, tr("QwenVL model returned invalid response") except Exception as e: # logger.debug(api_key) # logger.debug(base_url) # logger.debug(model_name) return False, f"{tr('QwenVL model is not available')}: {str(e)}" def render_vision_llm_settings(tr): """渲染视频分析模型设置""" st.subheader(tr("Vision Model Settings")) # 视频分析模型提供商选择 vision_providers = ['Siliconflow', 'Gemini', 'Gemini(OpenAI)', 'QwenVL', 'OpenAI'] saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower() saved_provider_index = 0 for i, provider in enumerate(vision_providers): if provider.lower() == saved_vision_provider: saved_provider_index = i break vision_provider = st.selectbox( tr("Vision Model Provider"), options=vision_providers, index=saved_provider_index ) vision_provider = vision_provider.lower() config.app["vision_llm_provider"] = vision_provider st.session_state['vision_llm_providers'] = vision_provider # 获取已保存的视觉模型配置 # 处理特殊的提供商名称映射 if vision_provider == 'gemini(openai)': vision_config_key = 'vision_gemini_openai' else: vision_config_key = f'vision_{vision_provider}' vision_api_key = config.app.get(f"{vision_config_key}_api_key", "") vision_base_url = config.app.get(f"{vision_config_key}_base_url", "") vision_model_name = config.app.get(f"{vision_config_key}_model_name", "") # 渲染视觉模型配置输入框 st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password") # 根据不同提供商设置默认值和帮助信息 if vision_provider == 'gemini': st_vision_base_url = st.text_input( tr("Vision Base URL"), value=vision_base_url or "https://generativelanguage.googleapis.com/v1beta", help=tr("原生Gemini API端点,默认: https://generativelanguage.googleapis.com/v1beta") ) st_vision_model_name = st.text_input( tr("Vision Model Name"), value=vision_model_name or "gemini-2.0-flash-exp", help=tr("原生Gemini模型,默认: gemini-2.0-flash-exp") ) elif vision_provider == 'gemini(openai)': st_vision_base_url = st.text_input( tr("Vision Base URL"), value=vision_base_url or "https://generativelanguage.googleapis.com/v1beta/openai", help=tr("OpenAI兼容的Gemini代理端点,如: https://your-proxy.com/v1") ) st_vision_model_name = st.text_input( tr("Vision Model Name"), value=vision_model_name or "gemini-2.0-flash-exp", help=tr("OpenAI格式的Gemini模型名称,默认: gemini-2.0-flash-exp") ) elif vision_provider == 'qwenvl': st_vision_base_url = st.text_input( tr("Vision Base URL"), value=vision_base_url, help=tr("Default: https://dashscope.aliyuncs.com/compatible-mode/v1") ) st_vision_model_name = st.text_input( tr("Vision Model Name"), value=vision_model_name or "qwen-vl-max-latest", help=tr("Default: qwen-vl-max-latest") ) else: st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url) st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name) # 在配置输入框后添加测试按钮 if st.button(tr("Test Connection"), key="test_vision_connection"): # 先验证配置 test_errors = [] if not st_vision_api_key: test_errors.append("请先输入API密钥") if not st_vision_model_name: test_errors.append("请先输入模型名称") if test_errors: for error in test_errors: st.error(error) else: with st.spinner(tr("Testing connection...")): try: success, message = test_vision_model_connection( api_key=st_vision_api_key, base_url=st_vision_base_url, model_name=st_vision_model_name, provider=vision_provider, tr=tr ) if success: st.success(message) else: st.error(message) except Exception as e: st.error(f"测试连接时发生错误: {str(e)}") logger.error(f"视频分析模型连接测试失败: {str(e)}") # 验证和保存视觉模型配置 validation_errors = [] config_changed = False # 验证API密钥 if st_vision_api_key: is_valid, error_msg = validate_api_key(st_vision_api_key, f"视频分析({vision_provider})") if is_valid: config.app[f"{vision_config_key}_api_key"] = st_vision_api_key st.session_state[f"{vision_config_key}_api_key"] = st_vision_api_key config_changed = True else: validation_errors.append(error_msg) # 验证Base URL if st_vision_base_url: is_valid, error_msg = validate_base_url(st_vision_base_url, f"视频分析({vision_provider})") if is_valid: config.app[f"{vision_config_key}_base_url"] = st_vision_base_url st.session_state[f"{vision_config_key}_base_url"] = st_vision_base_url config_changed = True else: validation_errors.append(error_msg) # 验证模型名称 if st_vision_model_name: is_valid, error_msg = validate_model_name(st_vision_model_name, f"视频分析({vision_provider})") if is_valid: config.app[f"{vision_config_key}_model_name"] = st_vision_model_name st.session_state[f"{vision_config_key}_model_name"] = st_vision_model_name config_changed = True else: validation_errors.append(error_msg) # 显示验证错误 show_config_validation_errors(validation_errors) # 如果配置有变化且没有验证错误,保存到文件 if config_changed and not validation_errors: try: config.save_config() if st_vision_api_key or st_vision_base_url or st_vision_model_name: st.success(f"视频分析模型({vision_provider})配置已保存") except Exception as e: st.error(f"保存配置失败: {str(e)}") logger.error(f"保存视频分析配置失败: {str(e)}") def test_text_model_connection(api_key, base_url, model_name, provider, tr): """测试文本模型连接 Args: api_key: API密钥 base_url: 基础URL model_name: 模型名称 provider: 提供商名称 Returns: bool: 连接是否成功 str: 测试结果消息 """ import requests try: # 构建统一的测试请求(遵循OpenAI格式) headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } # 特殊处理Gemini if provider.lower() == 'gemini': # 原生Gemini API测试 try: # 构建请求数据 request_data = { "contents": [{ "parts": [{"text": "直接回复我文本'当前网络可用'"}] }], "generationConfig": { "temperature": 1.0, "topK": 40, "topP": 0.95, "maxOutputTokens": 100, }, "safetySettings": [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE" } ] } # 构建请求URL api_base_url = base_url or "https://generativelanguage.googleapis.com/v1beta" url = f"{api_base_url}/models/{model_name}:generateContent?key={api_key}" # 发送请求 response = requests.post( url, json=request_data, headers={"Content-Type": "application/json"}, timeout=30 ) if response.status_code == 200: return True, tr("原生Gemini模型连接成功") else: return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}" except Exception as e: return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}" elif provider.lower() == 'gemini(openai)': # OpenAI兼容的Gemini代理测试 test_url = f"{base_url.rstrip('/')}/chat/completions" test_data = { "model": model_name, "messages": [ {"role": "user", "content": "直接回复我文本'当前网络可用'"} ], "stream": False } response = requests.post(test_url, headers=headers, json=test_data, timeout=10) if response.status_code == 200: return True, tr("OpenAI兼容Gemini代理连接成功") else: return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}" else: test_url = f"{base_url.rstrip('/')}/chat/completions" # 构建测试消息 test_data = { "model": model_name, "messages": [ {"role": "user", "content": "直接回复我文本'当前网络可用'"} ], "stream": False } # 发送测试请求 response = requests.post( test_url, headers=headers, json=test_data, ) # logger.debug(model_name) # logger.debug(api_key) # logger.debug(test_url) if response.status_code == 200: return True, tr("Text model is available") else: return False, f"{tr('Text model is not available')}: HTTP {response.status_code}" except Exception as e: logger.error(traceback.format_exc()) return False, f"{tr('Connection failed')}: {str(e)}" def render_text_llm_settings(tr): """渲染文案生成模型设置""" st.subheader(tr("Text Generation Model Settings")) # 文案生成模型提供商选择 text_providers = ['OpenAI', 'Siliconflow', 'DeepSeek', 'Gemini', 'Gemini(OpenAI)', 'Qwen', 'Moonshot'] saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower() saved_provider_index = 0 for i, provider in enumerate(text_providers): if provider.lower() == saved_text_provider: saved_provider_index = i break text_provider = st.selectbox( tr("Text Model Provider"), options=text_providers, index=saved_provider_index ) text_provider = text_provider.lower() config.app["text_llm_provider"] = text_provider # 获取已保存的文本模型配置 text_api_key = config.app.get(f"text_{text_provider}_api_key") text_base_url = config.app.get(f"text_{text_provider}_base_url") text_model_name = config.app.get(f"text_{text_provider}_model_name") # 渲染文本模型配置输入框 st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password") # 根据不同提供商设置默认值和帮助信息 if text_provider == 'gemini': st_text_base_url = st.text_input( tr("Text Base URL"), value=text_base_url or "https://generativelanguage.googleapis.com/v1beta", help=tr("原生Gemini API端点,默认: https://generativelanguage.googleapis.com/v1beta") ) st_text_model_name = st.text_input( tr("Text Model Name"), value=text_model_name or "gemini-2.0-flash-exp", help=tr("原生Gemini模型,默认: gemini-2.0-flash-exp") ) elif text_provider == 'gemini(openai)': st_text_base_url = st.text_input( tr("Text Base URL"), value=text_base_url or "https://generativelanguage.googleapis.com/v1beta/openai", help=tr("OpenAI兼容的Gemini代理端点,如: https://your-proxy.com/v1") ) st_text_model_name = st.text_input( tr("Text Model Name"), value=text_model_name or "gemini-2.0-flash-exp", help=tr("OpenAI格式的Gemini模型名称,默认: gemini-2.0-flash-exp") ) else: st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url) st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name) # 添加测试按钮 if st.button(tr("Test Connection"), key="test_text_connection"): # 先验证配置 test_errors = [] if not st_text_api_key: test_errors.append("请先输入API密钥") if not st_text_model_name: test_errors.append("请先输入模型名称") if test_errors: for error in test_errors: st.error(error) else: with st.spinner(tr("Testing connection...")): try: success, message = test_text_model_connection( api_key=st_text_api_key, base_url=st_text_base_url, model_name=st_text_model_name, provider=text_provider, tr=tr ) if success: st.success(message) else: st.error(message) except Exception as e: st.error(f"测试连接时发生错误: {str(e)}") logger.error(f"文案生成模型连接测试失败: {str(e)}") # 验证和保存文本模型配置 text_validation_errors = [] text_config_changed = False # 验证API密钥 if st_text_api_key: is_valid, error_msg = validate_api_key(st_text_api_key, f"文案生成({text_provider})") if is_valid: config.app[f"text_{text_provider}_api_key"] = st_text_api_key text_config_changed = True else: text_validation_errors.append(error_msg) # 验证Base URL if st_text_base_url: is_valid, error_msg = validate_base_url(st_text_base_url, f"文案生成({text_provider})") if is_valid: config.app[f"text_{text_provider}_base_url"] = st_text_base_url text_config_changed = True else: text_validation_errors.append(error_msg) # 验证模型名称 if st_text_model_name: is_valid, error_msg = validate_model_name(st_text_model_name, f"文案生成({text_provider})") if is_valid: config.app[f"text_{text_provider}_model_name"] = st_text_model_name text_config_changed = True else: text_validation_errors.append(error_msg) # 显示验证错误 show_config_validation_errors(text_validation_errors) # 如果配置有变化且没有验证错误,保存到文件 if text_config_changed and not text_validation_errors: try: config.save_config() if st_text_api_key or st_text_base_url or st_text_model_name: st.success(f"文案生成模型({text_provider})配置已保存") except Exception as e: st.error(f"保存配置失败: {str(e)}") logger.error(f"保存文案生成配置失败: {str(e)}") # # Cloudflare 特殊配置 # if text_provider == 'cloudflare': # st_account_id = st.text_input( # tr("Account ID"), # value=config.app.get(f"text_{text_provider}_account_id", "") # ) # if st_account_id: # config.app[f"text_{text_provider}_account_id"] = st_account_id