NarratoAI/webui/tools/generate_script_docu.py

265 lines
12 KiB
Python

# 纪录片脚本生成
import os
import json
import time
import asyncio
import traceback
import requests
from app.utils import video_processor
import streamlit as st
from loguru import logger
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from app.config import config
from app.utils.script_generator import ScriptProcessor
from app.utils import utils, video_processor, qwenvl_analyzer
from webui.tools.base import create_vision_analyzer, get_batch_files, get_batch_timestamps, chekc_video_config
def generate_script_docu(tr, params):
"""
生成 纪录片 视频脚本
"""
progress_bar = st.progress(0)
status_text = st.empty()
def update_progress(progress: float, message: str = ""):
progress_bar.progress(progress)
if message:
status_text.text(f"{progress}% - {message}")
else:
status_text.text(f"进度: {progress}%")
try:
with st.spinner("正在生成脚本..."):
if not params.video_origin_path:
st.error("请先选择视频文件")
return
# ===================提取键帧===================
update_progress(10, "正在提取关键帧...")
# 创建临时目录用于存储关键帧
keyframes_dir = os.path.join(utils.temp_dir(), "keyframes")
video_hash = utils.md5(params.video_origin_path + str(os.path.getmtime(params.video_origin_path)))
video_keyframes_dir = os.path.join(keyframes_dir, video_hash)
# 检查是否已经提取过关键帧
keyframe_files = []
if os.path.exists(video_keyframes_dir):
# 取已有的关键帧文件
for filename in sorted(os.listdir(video_keyframes_dir)):
if filename.endswith('.jpg'):
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
if keyframe_files:
logger.info(f"使用已缓存的关键帧: {video_keyframes_dir}")
st.info(f"使用已缓存的关键帧,如需重新提取请删除目录: {video_keyframes_dir}")
update_progress(20, f"使用已缓存关键帧,共 {len(keyframe_files)}")
# 如果没有缓存的关键帧,则进行提取
if not keyframe_files:
try:
# 确保目录存在
os.makedirs(video_keyframes_dir, exist_ok=True)
# 初始化视频处理器
processor = video_processor.VideoProcessor(params.video_origin_path)
# 处理视频并提取关键帧
processor.process_video_pipeline(
output_dir=video_keyframes_dir,
skip_seconds=st.session_state.get('skip_seconds'),
threshold=st.session_state.get('threshold')
)
# 获取所有关键文件路径
for filename in sorted(os.listdir(video_keyframes_dir)):
if filename.endswith('.jpg'):
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
if not keyframe_files:
raise Exception("未提取到任何关键帧")
update_progress(20, f"关键帧提取完成,共 {len(keyframe_files)}")
except Exception as e:
# 如果提取失败,清理创建的目录
try:
if os.path.exists(video_keyframes_dir):
import shutil
shutil.rmtree(video_keyframes_dir)
except Exception as cleanup_err:
logger.error(f"清理失败的关键帧目录时出错: {cleanup_err}")
raise Exception(f"关键帧提取失败: {str(e)}")
# 根据不同的 LLM 提供商处理
vision_llm_provider = st.session_state.get('vision_llm_providers').lower()
logger.debug(f"Vision LLM 提供商: {vision_llm_provider}")
try:
# ===================初始化视觉分析器===================
update_progress(30, "正在初始化视觉分析器...")
# 从配置中获取相关配置
if vision_llm_provider == 'gemini':
vision_api_key = st.session_state.get('vision_gemini_api_key')
vision_model = st.session_state.get('vision_gemini_model_name')
vision_base_url = st.session_state.get('vision_gemini_base_url')
elif vision_llm_provider == 'qwenvl':
vision_api_key = st.session_state.get('vision_qwenvl_api_key')
vision_model = st.session_state.get('vision_qwenvl_model_name', 'qwen-vl-max-latest')
vision_base_url = st.session_state.get('vision_qwenvl_base_url')
else:
raise ValueError(f"不支持的视觉分析提供商: {vision_llm_provider}")
# 创建视觉分析器实例
analyzer = create_vision_analyzer(
provider=vision_llm_provider,
api_key=vision_api_key,
model=vision_model,
base_url=vision_base_url
)
update_progress(40, "正在分析关键帧...")
# ===================创建异步事件循环===================
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# 执行异步分析
vision_batch_size = st.session_state.get('vision_batch_size') or config.frames.get("vision_batch_size")
results = loop.run_until_complete(
analyzer.analyze_images(
images=keyframe_files,
prompt=config.app.get('vision_analysis_prompt'),
batch_size=vision_batch_size
)
)
loop.close()
# ===================处理分析结果===================
update_progress(60, "正在整理分析结果...")
# 合并所有批次的析结果
frame_analysis = ""
prev_batch_files = None
for result in results:
if 'error' in result:
logger.warning(f"批次 {result['batch_index']} 处理出现警告: {result['error']}")
# 获取当前批次的文件列表 keyframe_001136_000045.jpg 将 000045 精度提升到 毫秒
batch_files = get_batch_files(keyframe_files, result, vision_batch_size)
logger.debug(f"批次 {result['batch_index']} 处理完成,共 {len(batch_files)} 张图片")
# logger.debug(batch_files)
first_timestamp, last_timestamp, _ = get_batch_timestamps(batch_files, prev_batch_files)
logger.debug(f"处理时间戳: {first_timestamp}-{last_timestamp}")
# 添加带时间戳的分析结果
frame_analysis += f"\n=== {first_timestamp}-{last_timestamp} ===\n"
frame_analysis += result['response']
frame_analysis += "\n"
# 更新上一个批次的文件
prev_batch_files = batch_files
if not frame_analysis.strip():
raise Exception("未能生成有效的帧分析结果")
# 保存分析结果
analysis_path = os.path.join(utils.temp_dir(), "frame_analysis.txt")
with open(analysis_path, 'w', encoding='utf-8') as f:
f.write(frame_analysis)
update_progress(70, "正在生成脚本...")
# 从配置中获取文本生成相关配置
text_provider = config.app.get('text_llm_provider', 'gemini').lower()
text_api_key = config.app.get(f'text_{text_provider}_api_key')
text_model = config.app.get(f'text_{text_provider}_model_name')
text_base_url = config.app.get(f'text_{text_provider}_base_url')
# 构建帧内容列表
frame_content_list = []
prev_batch_files = None
for i, result in enumerate(results):
if 'error' in result:
continue
batch_files = get_batch_files(keyframe_files, result, vision_batch_size)
_, _, timestamp_range = get_batch_timestamps(batch_files, prev_batch_files)
frame_content = {
"timestamp": timestamp_range,
"picture": result['response'],
"narration": "",
"OST": 2
}
frame_content_list.append(frame_content)
logger.debug(f"添加帧内容: 时间范围={timestamp_range}, 分析结果长度={len(result['response'])}")
# 更新上一个批次的文件
prev_batch_files = batch_files
if not frame_content_list:
raise Exception("没有有效的帧内容可以处理")
# ===================开始生成文案===================
update_progress(80, "正在生成文案...")
# 校验配置
api_params = {
"vision_api_key": vision_api_key,
"vision_model_name": vision_model,
"vision_base_url": vision_base_url or "",
"text_api_key": text_api_key,
"text_model_name": text_model,
"text_base_url": text_base_url or ""
}
chekc_video_config(api_params)
custom_prompt = st.session_state.get('custom_prompt', '')
processor = ScriptProcessor(
model_name=text_model,
api_key=text_api_key,
prompt=custom_prompt,
base_url=text_base_url or "",
video_theme=st.session_state.get('video_theme', '')
)
# 处理帧内容生成脚本
script_result = processor.process_frames(frame_content_list)
# 结果转换为JSON字符串
script = json.dumps(script_result, ensure_ascii=False, indent=2)
except Exception as e:
logger.exception(f"大模型处理过程中发生错误\n{traceback.format_exc()}")
raise Exception(f"分析失败: {str(e)}")
if script is None:
st.error("生成脚本失败,请检查日志")
st.stop()
logger.info(f"脚本生成完成")
if isinstance(script, list):
st.session_state['video_clip_json'] = script
elif isinstance(script, str):
st.session_state['video_clip_json'] = json.loads(script)
update_progress(80, "脚本生成完成")
time.sleep(0.1)
progress_bar.progress(100)
status_text.text("脚本生成完成!")
st.success("视频脚本生成成功!")
except Exception as err:
st.error(f"生成过程中发生错误: {str(err)}")
logger.exception(f"生成脚本时发生错误\n{traceback.format_exc()}")
finally:
time.sleep(2)
progress_bar.empty()
status_text.empty()