mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-10 18:02:51 +00:00
- 新增 QwenVL 视觉分析器类,实现对阿里云 Qwen 模型的支持 - 更新基础设置界面,增加代理配置和 QwenVL 模型可用性检测 - 修改脚本生成逻辑,支持 QwenVL 模型的图像分析 - 重构视觉分析器初始化和调用接口,提高代码复用性和可维护性
736 lines
29 KiB
Python
736 lines
29 KiB
Python
import os
|
|
import ssl
|
|
import glob
|
|
import json
|
|
import time
|
|
import asyncio
|
|
import traceback
|
|
from requests.adapters import HTTPAdapter
|
|
from urllib3.util.retry import Retry
|
|
import requests
|
|
import streamlit as st
|
|
from loguru import logger
|
|
|
|
from app.config import config
|
|
from app.models.schema import VideoClipParams
|
|
from app.utils.script_generator import ScriptProcessor
|
|
from app.utils import utils, check_script, gemini_analyzer, video_processor, video_processor_v2, qwenvl_analyzer
|
|
from webui.utils import file_utils
|
|
|
|
|
|
def get_batch_timestamps(batch_files, prev_batch_files=None):
|
|
"""
|
|
解析一批文件的时间戳范围,支持毫秒级精度
|
|
|
|
Args:
|
|
batch_files: 当前批次的文件列表
|
|
prev_batch_files: 上一个批次的文件列表,用于处理单张图片的情况
|
|
|
|
Returns:
|
|
tuple: (first_timestamp, last_timestamp, timestamp_range)
|
|
时间戳格式: HH:MM:SS,mmm (时:分:秒,毫秒)
|
|
例如: 00:00:50,100 表示50秒100毫秒
|
|
|
|
示例文件名格式:
|
|
keyframe_001253_000050100.jpg
|
|
其中 000050100 表示 00:00:50,100 (50秒100毫秒)
|
|
"""
|
|
if not batch_files:
|
|
logger.warning("Empty batch files")
|
|
return "00:00:00,000", "00:00:00,000", "00:00:00,000-00:00:00,000"
|
|
|
|
def get_frame_files():
|
|
"""获取首帧和尾帧文件名"""
|
|
if len(batch_files) == 1 and prev_batch_files and prev_batch_files:
|
|
# 单张图片情况:使用上一批次最后一帧作为首帧
|
|
first = os.path.basename(prev_batch_files[-1])
|
|
last = os.path.basename(batch_files[0])
|
|
logger.debug(f"单张图片批次,使用上一批次最后一帧作为首帧: {first}")
|
|
else:
|
|
first = os.path.basename(batch_files[0])
|
|
last = os.path.basename(batch_files[-1])
|
|
return first, last
|
|
|
|
def extract_time(filename):
|
|
"""从文件名提取时间信息"""
|
|
try:
|
|
# 提取类似 000050100 的时间戳部分
|
|
time_str = filename.split('_')[2].replace('.jpg', '')
|
|
if len(time_str) < 9: # 处理旧格式
|
|
time_str = time_str.ljust(9, '0')
|
|
return time_str
|
|
except (IndexError, AttributeError) as e:
|
|
logger.warning(f"Invalid filename format: {filename}, error: {e}")
|
|
return "000000000"
|
|
|
|
def format_timestamp(time_str):
|
|
"""
|
|
将时间字符串转换为 HH:MM:SS,mmm 格式
|
|
|
|
Args:
|
|
time_str: 9位数字字符串,格式为 HHMMSSMMM
|
|
例如: 000010000 表示 00时00分10秒000毫秒
|
|
000043039 表示 00时00分43秒039毫秒
|
|
|
|
Returns:
|
|
str: HH:MM:SS,mmm 格式的时间戳
|
|
"""
|
|
try:
|
|
if len(time_str) < 9:
|
|
logger.warning(f"Invalid timestamp format: {time_str}")
|
|
return "00:00:00,000"
|
|
|
|
# 从时间戳中提取时、分、秒和毫秒
|
|
hours = int(time_str[0:2]) # 前2位作为小时
|
|
minutes = int(time_str[2:4]) # 第3-4位作为分钟
|
|
seconds = int(time_str[4:6]) # 第5-6位作为秒数
|
|
milliseconds = int(time_str[6:]) # 最后3位作为毫秒
|
|
|
|
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
|
|
|
except ValueError as e:
|
|
logger.warning(f"时间戳格式转换失败: {time_str}, error: {e}")
|
|
return "00:00:00,000"
|
|
|
|
# 获取首帧和尾帧文件名
|
|
first_frame, last_frame = get_frame_files()
|
|
|
|
# 从文件名中提取时间信息
|
|
first_time = extract_time(first_frame)
|
|
last_time = extract_time(last_frame)
|
|
|
|
# 转换为标准时间戳格式
|
|
first_timestamp = format_timestamp(first_time)
|
|
last_timestamp = format_timestamp(last_time)
|
|
timestamp_range = f"{first_timestamp}-{last_timestamp}"
|
|
|
|
# logger.debug(f"解析时间戳: {first_frame} -> {first_timestamp}, {last_frame} -> {last_timestamp}")
|
|
return first_timestamp, last_timestamp, timestamp_range
|
|
|
|
|
|
def get_batch_files(keyframe_files, result, batch_size=5):
|
|
"""
|
|
获取当前批次的图片文件
|
|
"""
|
|
batch_start = result['batch_index'] * batch_size
|
|
batch_end = min(batch_start + batch_size, len(keyframe_files))
|
|
return keyframe_files[batch_start:batch_end]
|
|
|
|
|
|
def render_script_panel(tr):
|
|
"""渲染脚本配置面板"""
|
|
with st.container(border=True):
|
|
st.write(tr("Video Script Configuration"))
|
|
params = VideoClipParams()
|
|
|
|
# 渲染脚本文件选择
|
|
render_script_file(tr, params)
|
|
|
|
# 渲染视频文件选择
|
|
render_video_file(tr, params)
|
|
|
|
# 渲染视频主题和提示词
|
|
render_video_details(tr)
|
|
|
|
# 渲染脚本操作按钮
|
|
render_script_buttons(tr, params)
|
|
|
|
|
|
def render_script_file(tr, params):
|
|
"""渲染脚本文件选择"""
|
|
script_list = [
|
|
(tr("None"), ""),
|
|
(tr("Auto Generate"), "auto"),
|
|
(tr("Upload Script"), "upload_script") # 新增上传脚本选项
|
|
]
|
|
|
|
# 获取已有脚本文件
|
|
suffix = "*.json"
|
|
script_dir = utils.script_dir()
|
|
files = glob.glob(os.path.join(script_dir, suffix))
|
|
file_list = []
|
|
|
|
for file in files:
|
|
file_list.append({
|
|
"name": os.path.basename(file),
|
|
"file": file,
|
|
"ctime": os.path.getctime(file)
|
|
})
|
|
|
|
file_list.sort(key=lambda x: x["ctime"], reverse=True)
|
|
for file in file_list:
|
|
display_name = file['file'].replace(config.root_dir, "")
|
|
script_list.append((display_name, file['file']))
|
|
|
|
# 找到保存的脚本文件在列表中的索引
|
|
saved_script_path = st.session_state.get('video_clip_json_path', '')
|
|
selected_index = 0
|
|
for i, (_, path) in enumerate(script_list):
|
|
if path == saved_script_path:
|
|
selected_index = i
|
|
break
|
|
|
|
selected_script_index = st.selectbox(
|
|
tr("Script Files"),
|
|
index=selected_index,
|
|
options=range(len(script_list)),
|
|
format_func=lambda x: script_list[x][0]
|
|
)
|
|
|
|
script_path = script_list[selected_script_index][1]
|
|
st.session_state['video_clip_json_path'] = script_path
|
|
params.video_clip_json_path = script_path
|
|
|
|
# 处理脚本上传
|
|
if script_path == "upload_script":
|
|
uploaded_file = st.file_uploader(
|
|
tr("Upload Script File"),
|
|
type=["json"],
|
|
accept_multiple_files=False,
|
|
)
|
|
|
|
if uploaded_file is not None:
|
|
try:
|
|
# 读取上传的JSON内容并验证格式
|
|
script_content = uploaded_file.read().decode('utf-8')
|
|
json_data = json.loads(script_content)
|
|
|
|
# 保存到脚本目录
|
|
script_file_path = os.path.join(script_dir, uploaded_file.name)
|
|
file_name, file_extension = os.path.splitext(uploaded_file.name)
|
|
|
|
# 如果文件已存在,添加时间戳
|
|
if os.path.exists(script_file_path):
|
|
timestamp = time.strftime("%Y%m%d%H%M%S")
|
|
file_name_with_timestamp = f"{file_name}_{timestamp}"
|
|
script_file_path = os.path.join(script_dir, file_name_with_timestamp + file_extension)
|
|
|
|
# 写入文件
|
|
with open(script_file_path, "w", encoding='utf-8') as f:
|
|
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
|
|
|
# 更新状态
|
|
st.success(tr("Script Uploaded Successfully"))
|
|
st.session_state['video_clip_json_path'] = script_file_path
|
|
params.video_clip_json_path = script_file_path
|
|
time.sleep(1)
|
|
st.rerun()
|
|
|
|
except json.JSONDecodeError:
|
|
st.error(tr("Invalid JSON format"))
|
|
except Exception as e:
|
|
st.error(f"{tr('Upload failed')}: {str(e)}")
|
|
|
|
|
|
def render_video_file(tr, params):
|
|
"""渲染视频文件选择"""
|
|
video_list = [(tr("None"), ""), (tr("Upload Local Files"), "upload_local")]
|
|
|
|
# 获取已有视频文件
|
|
for suffix in ["*.mp4", "*.mov", "*.avi", "*.mkv"]:
|
|
video_files = glob.glob(os.path.join(utils.video_dir(), suffix))
|
|
for file in video_files:
|
|
display_name = file.replace(config.root_dir, "")
|
|
video_list.append((display_name, file))
|
|
|
|
selected_video_index = st.selectbox(
|
|
tr("Video File"),
|
|
index=0,
|
|
options=range(len(video_list)),
|
|
format_func=lambda x: video_list[x][0]
|
|
)
|
|
|
|
video_path = video_list[selected_video_index][1]
|
|
st.session_state['video_origin_path'] = video_path
|
|
params.video_origin_path = video_path
|
|
|
|
if video_path == "upload_local":
|
|
uploaded_file = st.file_uploader(
|
|
tr("Upload Local Files"),
|
|
type=["mp4", "mov", "avi", "flv", "mkv"],
|
|
accept_multiple_files=False,
|
|
)
|
|
|
|
if uploaded_file is not None:
|
|
video_file_path = os.path.join(utils.video_dir(), uploaded_file.name)
|
|
file_name, file_extension = os.path.splitext(uploaded_file.name)
|
|
|
|
if os.path.exists(video_file_path):
|
|
timestamp = time.strftime("%Y%m%d%H%M%S")
|
|
file_name_with_timestamp = f"{file_name}_{timestamp}"
|
|
video_file_path = os.path.join(utils.video_dir(), file_name_with_timestamp + file_extension)
|
|
|
|
with open(video_file_path, "wb") as f:
|
|
f.write(uploaded_file.read())
|
|
st.success(tr("File Uploaded Successfully"))
|
|
st.session_state['video_origin_path'] = video_file_path
|
|
params.video_origin_path = video_file_path
|
|
time.sleep(1)
|
|
st.rerun()
|
|
|
|
|
|
def render_video_details(tr):
|
|
"""渲染视频主题和提示词"""
|
|
video_theme = st.text_input(tr("Video Theme"))
|
|
custom_prompt = st.text_area(
|
|
tr("Generation Prompt"),
|
|
value=st.session_state.get('video_plot', ''),
|
|
help=tr("Custom prompt for LLM, leave empty to use default prompt"),
|
|
height=180
|
|
)
|
|
st.session_state['video_theme'] = video_theme
|
|
st.session_state['custom_prompt'] = custom_prompt
|
|
return video_theme, custom_prompt
|
|
|
|
|
|
def render_script_buttons(tr, params):
|
|
"""渲染脚本操作按钮"""
|
|
# 新增三个输入框,放在同一行
|
|
input_cols = st.columns(3)
|
|
|
|
with input_cols[0]:
|
|
skip_seconds = st.number_input(
|
|
"skip_seconds",
|
|
min_value=0,
|
|
value=st.session_state.get('skip_seconds', config.frames.get('skip_seconds', 0)),
|
|
help=tr("Skip the first few seconds"),
|
|
key="skip_seconds_input"
|
|
)
|
|
st.session_state['skip_seconds'] = skip_seconds
|
|
|
|
with input_cols[1]:
|
|
threshold = st.number_input(
|
|
"threshold",
|
|
min_value=0,
|
|
value=st.session_state.get('threshold', config.frames.get('threshold', 30)),
|
|
help=tr("Difference threshold"),
|
|
key="threshold_input"
|
|
)
|
|
st.session_state['threshold'] = threshold
|
|
|
|
with input_cols[2]:
|
|
vision_batch_size = st.number_input(
|
|
"vision_batch_size",
|
|
min_value=1,
|
|
max_value=20,
|
|
value=st.session_state.get('vision_batch_size', config.frames.get('vision_batch_size', 5)),
|
|
help=tr("Vision processing batch size"),
|
|
key="vision_batch_size_input"
|
|
)
|
|
st.session_state['vision_batch_size'] = vision_batch_size
|
|
|
|
# 生成/加载按钮
|
|
script_path = st.session_state.get('video_clip_json_path', '')
|
|
if script_path == "auto":
|
|
button_name = tr("Generate Video Script")
|
|
elif script_path:
|
|
button_name = tr("Load Video Script")
|
|
else:
|
|
button_name = tr("Please Select Script File")
|
|
|
|
if st.button(button_name, key="script_action", disabled=not script_path):
|
|
if script_path == "auto":
|
|
generate_script(tr, params)
|
|
else:
|
|
load_script(tr, script_path)
|
|
|
|
# 视频脚本编辑区
|
|
video_clip_json_details = st.text_area(
|
|
tr("Video Script"),
|
|
value=json.dumps(st.session_state.get('video_clip_json', []), indent=2, ensure_ascii=False),
|
|
height=180
|
|
)
|
|
|
|
# 操作按钮行
|
|
button_cols = st.columns(3)
|
|
with button_cols[0]:
|
|
if st.button(tr("Check Format"), key="check_format", use_container_width=True):
|
|
check_script_format(tr, video_clip_json_details)
|
|
|
|
with button_cols[1]:
|
|
if st.button(tr("Save Script"), key="save_script", use_container_width=True):
|
|
save_script(tr, video_clip_json_details)
|
|
|
|
with button_cols[2]:
|
|
script_valid = st.session_state.get('script_format_valid', False)
|
|
if st.button(tr("Crop Video"), key="crop_video", disabled=not script_valid, use_container_width=True):
|
|
crop_video(tr, params)
|
|
|
|
|
|
def check_script_format(tr, script_content):
|
|
"""检查脚本格式"""
|
|
try:
|
|
result = check_script.check_format(script_content)
|
|
if result.get('success'):
|
|
st.success(tr("Script format check passed"))
|
|
st.session_state['script_format_valid'] = True
|
|
else:
|
|
st.error(f"{tr('Script format check failed')}: {result.get('message')}")
|
|
st.session_state['script_format_valid'] = False
|
|
except Exception as e:
|
|
st.error(f"{tr('Script format check error')}: {str(e)}")
|
|
st.session_state['script_format_valid'] = False
|
|
|
|
|
|
def load_script(tr, script_path):
|
|
"""加载脚本文件"""
|
|
try:
|
|
with open(script_path, 'r', encoding='utf-8') as f:
|
|
script = f.read()
|
|
script = utils.clean_model_output(script)
|
|
st.session_state['video_clip_json'] = json.loads(script)
|
|
st.success(tr("Script loaded successfully"))
|
|
st.rerun()
|
|
except Exception as e:
|
|
st.error(f"{tr('Failed to load script')}: {str(e)}")
|
|
|
|
|
|
def generate_script(tr, params):
|
|
"""生成视频脚本"""
|
|
progress_bar = st.progress(0)
|
|
status_text = st.empty()
|
|
|
|
def update_progress(progress: float, message: str = ""):
|
|
progress_bar.progress(progress)
|
|
if message:
|
|
status_text.text(f"{progress}% - {message}")
|
|
else:
|
|
status_text.text(f"进度: {progress}%")
|
|
|
|
try:
|
|
with st.spinner("正在生成脚本..."):
|
|
if not params.video_origin_path:
|
|
st.error("请先选择视频文件")
|
|
return
|
|
|
|
# ===================提取键帧===================
|
|
update_progress(10, "正在提取关键帧...")
|
|
|
|
# 创建临时目录用于存储关键帧
|
|
keyframes_dir = os.path.join(utils.temp_dir(), "keyframes")
|
|
video_hash = utils.md5(params.video_origin_path + str(os.path.getmtime(params.video_origin_path)))
|
|
video_keyframes_dir = os.path.join(keyframes_dir, video_hash)
|
|
|
|
# 检查是否已经提取过关键帧
|
|
keyframe_files = []
|
|
if os.path.exists(video_keyframes_dir):
|
|
# 取已有的关键帧文件
|
|
for filename in sorted(os.listdir(video_keyframes_dir)):
|
|
if filename.endswith('.jpg'):
|
|
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
|
|
|
|
if keyframe_files:
|
|
logger.info(f"使用已缓存的关键帧: {video_keyframes_dir}")
|
|
st.info(f"使用已缓存的关键帧,如需重新提取请删除目录: {video_keyframes_dir}")
|
|
update_progress(20, f"使用已缓存关键帧,共 {len(keyframe_files)} 帧")
|
|
|
|
# 如果没有缓存的关键帧,则进行提取
|
|
if not keyframe_files:
|
|
try:
|
|
# 确保目录存在
|
|
os.makedirs(video_keyframes_dir, exist_ok=True)
|
|
|
|
# 初始化视频处理器
|
|
if config.frames.get("version") == "v2":
|
|
processor = video_processor_v2.VideoProcessor(params.video_origin_path)
|
|
# 处理视频并提取关键帧
|
|
processor.process_video_pipeline(
|
|
output_dir=video_keyframes_dir,
|
|
skip_seconds=st.session_state.get('skip_seconds'),
|
|
threshold=st.session_state.get('threshold')
|
|
)
|
|
else:
|
|
processor = video_processor.VideoProcessor(params.video_origin_path)
|
|
# 处理视频并提取关键帧
|
|
processor.process_video(
|
|
output_dir=video_keyframes_dir,
|
|
skip_seconds=0
|
|
)
|
|
|
|
# 获取所有关键文件路径
|
|
for filename in sorted(os.listdir(video_keyframes_dir)):
|
|
if filename.endswith('.jpg'):
|
|
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
|
|
|
|
if not keyframe_files:
|
|
raise Exception("未提取到任何关键帧")
|
|
|
|
update_progress(20, f"关键帧提取完成,共 {len(keyframe_files)} 帧")
|
|
|
|
except Exception as e:
|
|
# 如果提取失败,清理创建的目录
|
|
try:
|
|
if os.path.exists(video_keyframes_dir):
|
|
import shutil
|
|
shutil.rmtree(video_keyframes_dir)
|
|
except Exception as cleanup_err:
|
|
logger.error(f"清理失败的关键帧目录时出错: {cleanup_err}")
|
|
|
|
raise Exception(f"关键帧提取失败: {str(e)}")
|
|
|
|
# 根据不同的 LLM 提供商处理
|
|
vision_llm_provider = st.session_state.get('vision_llm_providers').lower()
|
|
logger.debug(f"Vision LLM 提供商: {vision_llm_provider}")
|
|
|
|
try:
|
|
# ===================初始化视觉分析器===================
|
|
update_progress(30, "正在初始化视觉分析器...")
|
|
|
|
# 从配置中获取相关配置
|
|
if vision_llm_provider == 'gemini':
|
|
vision_api_key = st.session_state.get('vision_gemini_api_key')
|
|
vision_model = st.session_state.get('vision_gemini_model_name')
|
|
vision_base_url = st.session_state.get('vision_gemini_base_url')
|
|
elif vision_llm_provider == 'qwenvl':
|
|
vision_api_key = st.session_state.get('vision_qwenvl_api_key')
|
|
vision_model = st.session_state.get('vision_qwenvl_model_name', 'qwen-vl-max-latest')
|
|
vision_base_url = st.session_state.get('vision_qwenvl_base_url', 'https://dashscope.aliyuncs.com/compatible-mode/v1')
|
|
else:
|
|
raise ValueError(f"不支持的视觉分析提供商: {vision_llm_provider}")
|
|
|
|
# 创建视觉分析器实例
|
|
analyzer = create_vision_analyzer(
|
|
provider=vision_llm_provider,
|
|
api_key=vision_api_key,
|
|
model=vision_model,
|
|
base_url=vision_base_url
|
|
)
|
|
|
|
update_progress(40, "正在分析关键帧...")
|
|
|
|
# ===================创建异步事件循环===================
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
|
|
# 执行异步分析
|
|
vision_batch_size = st.session_state.get('vision_batch_size') or config.frames.get("vision_batch_size")
|
|
results = loop.run_until_complete(
|
|
analyzer.analyze_images(
|
|
images=keyframe_files,
|
|
prompt=config.app.get('vision_analysis_prompt'),
|
|
batch_size=vision_batch_size
|
|
)
|
|
)
|
|
loop.close()
|
|
|
|
# ===================处理分析结果===================
|
|
update_progress(60, "正在整理分析结果...")
|
|
|
|
# 合并所有批次的析结果
|
|
frame_analysis = ""
|
|
prev_batch_files = None
|
|
|
|
for result in results:
|
|
if 'error' in result:
|
|
logger.warning(f"批次 {result['batch_index']} 处理出现警告: {result['error']}")
|
|
|
|
# 获取当前批次的文件列表 keyframe_001136_000045.jpg 将 000045 精度提升到 毫秒
|
|
batch_files = get_batch_files(keyframe_files, result, vision_batch_size)
|
|
logger.debug(f"批次 {result['batch_index']} 处理完成,共 {len(batch_files)} 张图片")
|
|
# logger.debug(batch_files)
|
|
|
|
first_timestamp, last_timestamp, _ = get_batch_timestamps(batch_files, prev_batch_files)
|
|
logger.debug(f"处理时间戳: {first_timestamp}-{last_timestamp}")
|
|
|
|
# 添加带时间戳的分析结果
|
|
frame_analysis += f"\n=== {first_timestamp}-{last_timestamp} ===\n"
|
|
frame_analysis += result['response']
|
|
frame_analysis += "\n"
|
|
|
|
# 更新上一个批次的文件
|
|
prev_batch_files = batch_files
|
|
|
|
if not frame_analysis.strip():
|
|
raise Exception("未能生成有效的帧分析结果")
|
|
|
|
# 保存分析结果
|
|
analysis_path = os.path.join(utils.temp_dir(), "frame_analysis.txt")
|
|
with open(analysis_path, 'w', encoding='utf-8') as f:
|
|
f.write(frame_analysis)
|
|
|
|
update_progress(70, "正在生成脚本...")
|
|
|
|
# 从配置中获取文本生成相关配置
|
|
text_provider = config.app.get('text_llm_provider', 'gemini').lower()
|
|
text_api_key = config.app.get(f'text_{text_provider}_api_key')
|
|
text_model = config.app.get(f'text_{text_provider}_model_name')
|
|
text_base_url = config.app.get(f'text_{text_provider}_base_url')
|
|
|
|
# 构建帧内容列表
|
|
frame_content_list = []
|
|
prev_batch_files = None
|
|
|
|
for i, result in enumerate(results):
|
|
if 'error' in result:
|
|
continue
|
|
|
|
batch_files = get_batch_files(keyframe_files, result, vision_batch_size)
|
|
_, _, timestamp_range = get_batch_timestamps(batch_files, prev_batch_files)
|
|
|
|
frame_content = {
|
|
"timestamp": timestamp_range,
|
|
"picture": result['response'],
|
|
"narration": "",
|
|
"OST": 2
|
|
}
|
|
frame_content_list.append(frame_content)
|
|
|
|
logger.debug(f"添加帧内容: 时间范围={timestamp_range}, 分析结果长度={len(result['response'])}")
|
|
|
|
# 更新上一个批次的文件
|
|
prev_batch_files = batch_files
|
|
|
|
if not frame_content_list:
|
|
raise Exception("没有有效的帧内容可以处理")
|
|
|
|
# ===================开始生成文案===================
|
|
update_progress(80, "正在生成文案...")
|
|
# 校验配置
|
|
api_params = {
|
|
"vision_api_key": vision_api_key,
|
|
"vision_model_name": vision_model,
|
|
"vision_base_url": vision_base_url or "",
|
|
"text_api_key": text_api_key,
|
|
"text_model_name": text_model,
|
|
"text_base_url": text_base_url or ""
|
|
}
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
session = requests.Session()
|
|
retry_strategy = Retry(
|
|
total=3,
|
|
backoff_factor=1,
|
|
status_forcelist=[500, 502, 503, 504]
|
|
)
|
|
adapter = HTTPAdapter(max_retries=retry_strategy)
|
|
session.mount("https://", adapter)
|
|
try:
|
|
response = session.post(
|
|
f"{config.app.get('narrato_api_url')}/video/config",
|
|
headers=headers,
|
|
json=api_params,
|
|
timeout=30,
|
|
verify=True
|
|
)
|
|
except Exception as e:
|
|
pass
|
|
custom_prompt = st.session_state.get('custom_prompt', '')
|
|
processor = ScriptProcessor(
|
|
model_name=text_model,
|
|
api_key=text_api_key,
|
|
prompt=custom_prompt,
|
|
base_url=text_base_url or "",
|
|
video_theme=st.session_state.get('video_theme', '')
|
|
)
|
|
|
|
# 处理帧内容生成脚本
|
|
script_result = processor.process_frames(frame_content_list)
|
|
|
|
# 结果转换为JSON字符串
|
|
script = json.dumps(script_result, ensure_ascii=False, indent=2)
|
|
|
|
except Exception as e:
|
|
logger.exception(f"大模型处理过程中发生错误\n{traceback.format_exc()}")
|
|
raise Exception(f"分析失败: {str(e)}")
|
|
|
|
if script is None:
|
|
st.error("生成脚本失败,请检查日志")
|
|
st.stop()
|
|
logger.info(f"脚本生成完成")
|
|
if isinstance(script, list):
|
|
st.session_state['video_clip_json'] = script
|
|
elif isinstance(script, str):
|
|
st.session_state['video_clip_json'] = json.loads(script)
|
|
update_progress(80, "脚本生成完成")
|
|
|
|
time.sleep(0.1)
|
|
progress_bar.progress(100)
|
|
status_text.text("脚本生成完成!")
|
|
st.success("视频脚本生成成功!")
|
|
|
|
except Exception as err:
|
|
st.error(f"生成过程中发生错误: {str(err)}")
|
|
logger.exception(f"生成脚本时发生错误\n{traceback.format_exc()}")
|
|
finally:
|
|
time.sleep(2)
|
|
progress_bar.empty()
|
|
status_text.empty()
|
|
|
|
|
|
def save_script(tr, video_clip_json_details):
|
|
"""保存视频脚本"""
|
|
if not video_clip_json_details:
|
|
st.error(tr("请输入视频脚本"))
|
|
st.stop()
|
|
|
|
with st.spinner(tr("Save Script")):
|
|
script_dir = utils.script_dir()
|
|
timestamp = time.strftime("%Y-%m%d-%H%M%S")
|
|
save_path = os.path.join(script_dir, f"{timestamp}.json")
|
|
|
|
try:
|
|
data = json.loads(video_clip_json_details)
|
|
with open(save_path, 'w', encoding='utf-8') as file:
|
|
json.dump(data, file, ensure_ascii=False, indent=4)
|
|
st.session_state['video_clip_json'] = data
|
|
st.session_state['video_clip_json_path'] = save_path
|
|
|
|
# 更新配置
|
|
config.app["video_clip_json_path"] = save_path
|
|
|
|
# 显示成功消息
|
|
st.success(tr("Script saved successfully"))
|
|
|
|
# 强制重新加载页面更新选择框
|
|
time.sleep(0.5) # 给一点时间让用户看到成功消息
|
|
st.rerun()
|
|
|
|
except Exception as err:
|
|
st.error(f"{tr('Failed to save script')}: {str(err)}")
|
|
st.stop()
|
|
|
|
|
|
def crop_video(tr, params):
|
|
"""裁剪视频"""
|
|
progress_bar = st.progress(0)
|
|
status_text = st.empty()
|
|
|
|
def update_progress(progress):
|
|
progress_bar.progress(progress)
|
|
status_text.text(f"剪辑进度: {progress}%")
|
|
|
|
try:
|
|
utils.cut_video(params, update_progress)
|
|
time.sleep(0.5)
|
|
progress_bar.progress(100)
|
|
status_text.text("剪完成!")
|
|
st.success("视频剪辑成功完成!")
|
|
except Exception as e:
|
|
st.error(f"剪辑过程中发生错误: {str(e)}")
|
|
finally:
|
|
time.sleep(2)
|
|
progress_bar.empty()
|
|
status_text.empty()
|
|
|
|
|
|
def get_script_params():
|
|
"""获取脚本参数"""
|
|
return {
|
|
'video_language': st.session_state.get('video_language', ''),
|
|
'video_clip_json_path': st.session_state.get('video_clip_json_path', ''),
|
|
'video_origin_path': st.session_state.get('video_origin_path', ''),
|
|
'video_name': st.session_state.get('video_name', ''),
|
|
'video_plot': st.session_state.get('video_plot', '')
|
|
}
|
|
|
|
|
|
def create_vision_analyzer(provider, api_key, model, base_url):
|
|
if provider == 'gemini':
|
|
return gemini_analyzer.VisionAnalyzer(model_name=model, api_key=api_key)
|
|
elif provider == 'qwenvl':
|
|
return qwenvl_analyzer.QwenAnalyzer(model_name=model, api_key=api_key)
|
|
else:
|
|
raise ValueError(f"不支持的视觉分析提供商: {provider}")
|