mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-11 10:32:49 +00:00
326 lines
12 KiB
Python
326 lines
12 KiB
Python
import json
|
||
from typing import List, Union, Dict
|
||
import os
|
||
from pathlib import Path
|
||
from loguru import logger
|
||
from tqdm import tqdm
|
||
import asyncio
|
||
from tenacity import retry, stop_after_attempt, retry_if_exception_type, wait_exponential
|
||
import requests
|
||
import PIL.Image
|
||
import traceback
|
||
import base64
|
||
import io
|
||
from app.utils import utils
|
||
|
||
|
||
class VisionAnalyzer:
|
||
"""原生Gemini视觉分析器类"""
|
||
|
||
def __init__(self, model_name: str = "gemini-2.0-flash-exp", api_key: str = None, base_url: str = None):
|
||
"""初始化视觉分析器"""
|
||
if not api_key:
|
||
raise ValueError("必须提供API密钥")
|
||
|
||
self.model_name = model_name
|
||
self.api_key = api_key
|
||
self.base_url = base_url or "https://generativelanguage.googleapis.com/v1beta"
|
||
|
||
# 初始化配置
|
||
self._configure_client()
|
||
|
||
def _configure_client(self):
|
||
"""配置原生Gemini API客户端"""
|
||
# 使用原生Gemini REST API
|
||
self.client = None
|
||
logger.info(f"配置原生Gemini API,端点: {self.base_url}, 模型: {self.model_name}")
|
||
|
||
@retry(
|
||
stop=stop_after_attempt(3),
|
||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||
retry=retry_if_exception_type(requests.exceptions.RequestException)
|
||
)
|
||
async def _generate_content_with_retry(self, prompt, batch):
|
||
"""使用重试机制调用原生Gemini API"""
|
||
try:
|
||
return await self._generate_with_gemini_api(prompt, batch)
|
||
except requests.exceptions.RequestException as e:
|
||
logger.warning(f"Gemini API请求异常: {str(e)}")
|
||
raise
|
||
except Exception as e:
|
||
logger.error(f"Gemini API生成内容时发生错误: {str(e)}")
|
||
raise
|
||
|
||
async def _generate_with_gemini_api(self, prompt, batch):
|
||
"""使用原生Gemini REST API生成内容"""
|
||
# 将PIL图片转换为base64编码
|
||
image_parts = []
|
||
for img in batch:
|
||
# 将PIL图片转换为字节流
|
||
img_buffer = io.BytesIO()
|
||
img.save(img_buffer, format='JPEG', quality=85) # 优化图片质量
|
||
img_bytes = img_buffer.getvalue()
|
||
|
||
# 转换为base64
|
||
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
||
image_parts.append({
|
||
"inline_data": {
|
||
"mime_type": "image/jpeg",
|
||
"data": img_base64
|
||
}
|
||
})
|
||
|
||
# 构建符合官方文档的请求数据
|
||
request_data = {
|
||
"contents": [{
|
||
"parts": [
|
||
{"text": prompt},
|
||
*image_parts
|
||
]
|
||
}],
|
||
"generationConfig": {
|
||
"temperature": 1.0,
|
||
"topK": 40,
|
||
"topP": 0.95,
|
||
"maxOutputTokens": 8192,
|
||
"candidateCount": 1,
|
||
"stopSequences": []
|
||
},
|
||
"safetySettings": [
|
||
{
|
||
"category": "HARM_CATEGORY_HARASSMENT",
|
||
"threshold": "BLOCK_NONE"
|
||
},
|
||
{
|
||
"category": "HARM_CATEGORY_HATE_SPEECH",
|
||
"threshold": "BLOCK_NONE"
|
||
},
|
||
{
|
||
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
||
"threshold": "BLOCK_NONE"
|
||
},
|
||
{
|
||
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
||
"threshold": "BLOCK_NONE"
|
||
}
|
||
]
|
||
}
|
||
|
||
# 构建请求URL
|
||
url = f"{self.base_url}/models/{self.model_name}:generateContent?key={self.api_key}"
|
||
|
||
# 发送请求
|
||
response = await asyncio.to_thread(
|
||
requests.post,
|
||
url,
|
||
json=request_data,
|
||
headers={
|
||
"Content-Type": "application/json",
|
||
"User-Agent": "NarratoAI/1.0"
|
||
},
|
||
timeout=120 # 增加超时时间
|
||
)
|
||
|
||
# 处理HTTP错误
|
||
if response.status_code == 429:
|
||
raise requests.exceptions.RequestException(f"API配额限制: {response.text}")
|
||
elif response.status_code == 400:
|
||
raise Exception(f"请求参数错误: {response.text}")
|
||
elif response.status_code == 403:
|
||
raise Exception(f"API密钥无效或权限不足: {response.text}")
|
||
elif response.status_code != 200:
|
||
raise Exception(f"Gemini API请求失败: {response.status_code} - {response.text}")
|
||
|
||
response_data = response.json()
|
||
|
||
# 检查响应格式
|
||
if "candidates" not in response_data or not response_data["candidates"]:
|
||
raise Exception("Gemini API返回无效响应,可能触发了安全过滤")
|
||
|
||
candidate = response_data["candidates"][0]
|
||
|
||
# 检查是否被安全过滤阻止
|
||
if "finishReason" in candidate and candidate["finishReason"] == "SAFETY":
|
||
raise Exception("内容被Gemini安全过滤器阻止")
|
||
|
||
if "content" not in candidate or "parts" not in candidate["content"]:
|
||
raise Exception("Gemini API返回内容格式错误")
|
||
|
||
# 提取文本内容
|
||
text_content = ""
|
||
for part in candidate["content"]["parts"]:
|
||
if "text" in part:
|
||
text_content += part["text"]
|
||
|
||
if not text_content.strip():
|
||
raise Exception("Gemini API返回空内容")
|
||
|
||
# 创建兼容的响应对象
|
||
class CompatibleResponse:
|
||
def __init__(self, text):
|
||
self.text = text
|
||
|
||
return CompatibleResponse(text_content)
|
||
|
||
async def analyze_images(self,
|
||
images: Union[List[str], List[PIL.Image.Image]],
|
||
prompt: str,
|
||
batch_size: int) -> List[Dict]:
|
||
"""批量分析多张图片"""
|
||
try:
|
||
# 加载图片
|
||
if isinstance(images[0], str):
|
||
images = self.load_images(images)
|
||
|
||
# 验证图片列表
|
||
if not images:
|
||
raise ValueError("图片列表为空")
|
||
|
||
# 验证每个图片对象
|
||
valid_images = []
|
||
for i, img in enumerate(images):
|
||
if not isinstance(img, PIL.Image.Image):
|
||
logger.error(f"无效的图片对象,索引 {i}: {type(img)}")
|
||
continue
|
||
valid_images.append(img)
|
||
|
||
if not valid_images:
|
||
raise ValueError("没有有效的图片对象")
|
||
|
||
images = valid_images
|
||
results = []
|
||
# 视频帧总数除以批量处理大小,如果有小数则+1
|
||
batches_needed = len(images) // batch_size
|
||
if len(images) % batch_size > 0:
|
||
batches_needed += 1
|
||
|
||
logger.debug(f"视频帧总数:{len(images)}, 每批处理 {batch_size} 帧, 需要访问 VLM {batches_needed} 次")
|
||
|
||
with tqdm(total=batches_needed, desc="分析进度") as pbar:
|
||
for i in range(0, len(images), batch_size):
|
||
batch = images[i:i + batch_size]
|
||
retry_count = 0
|
||
|
||
while retry_count < 3:
|
||
try:
|
||
# 在每个批次处理前添加小延迟
|
||
# if i > 0:
|
||
# await asyncio.sleep(2)
|
||
|
||
# 确保每个批次的图片都是有效的
|
||
valid_batch = [img for img in batch if isinstance(img, PIL.Image.Image)]
|
||
if not valid_batch:
|
||
raise ValueError(f"批次 {i // batch_size} 中没有有效的图片")
|
||
|
||
response = await self._generate_content_with_retry(prompt, valid_batch)
|
||
results.append({
|
||
'batch_index': i // batch_size,
|
||
'images_processed': len(valid_batch),
|
||
'response': response.text,
|
||
'model_used': self.model_name
|
||
})
|
||
break
|
||
|
||
except Exception as e:
|
||
retry_count += 1
|
||
error_msg = f"批次 {i // batch_size} 处理出错: {str(e)}"
|
||
logger.error(error_msg)
|
||
|
||
if retry_count >= 3:
|
||
results.append({
|
||
'batch_index': i // batch_size,
|
||
'images_processed': len(batch),
|
||
'error': error_msg,
|
||
'model_used': self.model_name
|
||
})
|
||
else:
|
||
logger.info(f"批次 {i // batch_size} 处理失败,等待60秒后重试当前批次...")
|
||
await asyncio.sleep(60)
|
||
|
||
pbar.update(1)
|
||
|
||
return results
|
||
|
||
except Exception as e:
|
||
error_msg = f"图片分析过程中发生错误: {str(e)}\n{traceback.format_exc()}"
|
||
logger.error(error_msg)
|
||
raise Exception(error_msg)
|
||
|
||
def save_results_to_txt(self, results: List[Dict], output_dir: str):
|
||
"""将分析结果保存到txt文件"""
|
||
# 确保输出目录存在
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
for result in results:
|
||
if not result.get('image_paths'):
|
||
continue
|
||
|
||
response_text = result['response']
|
||
image_paths = result['image_paths']
|
||
|
||
# 从文件名中提取时间戳并转换为标准格式
|
||
def format_timestamp(img_path):
|
||
# 从文件名中提取时间部分
|
||
timestamp = Path(img_path).stem.split('_')[-1]
|
||
try:
|
||
# 将时间转换为秒
|
||
seconds = utils.time_to_seconds(timestamp.replace('_', ':'))
|
||
# 转换为 HH:MM:SS,mmm 格式
|
||
hours = int(seconds // 3600)
|
||
minutes = int((seconds % 3600) // 60)
|
||
seconds_remainder = seconds % 60
|
||
whole_seconds = int(seconds_remainder)
|
||
milliseconds = int((seconds_remainder - whole_seconds) * 1000)
|
||
|
||
return f"{hours:02d}:{minutes:02d}:{whole_seconds:02d},{milliseconds:03d}"
|
||
except Exception as e:
|
||
logger.error(f"时间戳格式转换错误: {timestamp}, {str(e)}")
|
||
return timestamp
|
||
|
||
start_timestamp = format_timestamp(image_paths[0])
|
||
end_timestamp = format_timestamp(image_paths[-1])
|
||
|
||
txt_path = os.path.join(output_dir, f"frame_{start_timestamp}_{end_timestamp}.txt")
|
||
|
||
# 保存结果到txt文件
|
||
with open(txt_path, 'w', encoding='utf-8') as f:
|
||
f.write(response_text.strip())
|
||
logger.info(f"已保存分析结果到: {txt_path}")
|
||
|
||
def load_images(self, image_paths: List[str]) -> List[PIL.Image.Image]:
|
||
"""
|
||
加载多张图片
|
||
Args:
|
||
image_paths: 图片路径列表
|
||
Returns:
|
||
加载后的PIL Image对象列表
|
||
"""
|
||
images = []
|
||
failed_images = []
|
||
|
||
for img_path in image_paths:
|
||
try:
|
||
if not os.path.exists(img_path):
|
||
logger.error(f"图片文件不存在: {img_path}")
|
||
failed_images.append(img_path)
|
||
continue
|
||
|
||
img = PIL.Image.open(img_path)
|
||
# 确保图片被完全加载
|
||
img.load()
|
||
# 转换为RGB模式
|
||
if img.mode != 'RGB':
|
||
img = img.convert('RGB')
|
||
images.append(img)
|
||
|
||
except Exception as e:
|
||
logger.error(f"无法加载图片 {img_path}: {str(e)}")
|
||
failed_images.append(img_path)
|
||
|
||
if failed_images:
|
||
logger.warning(f"以下图片加载失败:\n{json.dumps(failed_images, indent=2, ensure_ascii=False)}")
|
||
|
||
if not images:
|
||
raise ValueError("没有成功加载任何图片")
|
||
|
||
return images |