mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-13 04:02:49 +00:00
771 lines
33 KiB
Python
771 lines
33 KiB
Python
import os
|
||
import re
|
||
import json
|
||
import traceback
|
||
import streamlit as st
|
||
from typing import List
|
||
from loguru import logger
|
||
from openai import OpenAI
|
||
from openai import AzureOpenAI
|
||
from openai.types.chat import ChatCompletion
|
||
import google.generativeai as gemini
|
||
from googleapiclient.errors import ResumableUploadError
|
||
from google.api_core.exceptions import FailedPrecondition
|
||
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
||
import subprocess
|
||
|
||
from app.config import config
|
||
|
||
_max_retries = 5
|
||
|
||
Method = """
|
||
重要提示:每一部剧的文案,前几句必须吸引人
|
||
首先我们在看完看懂电影后,大脑里面要先有一个大概的轮廓,也就是一个类似于作文的大纲,电影主题线在哪里,首先要找到。
|
||
一般将文案分为开头、内容、结尾
|
||
## 开头部分
|
||
文案开头三句话,是留住用户的关键!
|
||
|
||
### 方式一:开头概括总结
|
||
文案的前三句,是整部电影的概括总结,2-3句介绍后,开始叙述故事剧情!
|
||
推荐新手(新号)做:(盘点型)
|
||
盘点全球最恐怖的10部电影
|
||
盘点全球最科幻的10部电影
|
||
盘点全球最悲惨的10部电影
|
||
盘全球最值得看的10部灾难电影
|
||
盘点全球最值得看的10部励志电影
|
||
|
||
下面的示例就是最简单的解说文案开头:
|
||
1.这是XXX国20年来最大尺度的一部剧,极度烧脑,却让99%的人看得心潮澎湃、无法自拔,故事开始……
|
||
2.这是有史以来电影院唯一一部全程开灯放完的电影,期间无数人尖叫昏厥,他被成为勇敢者的专属,因为99%的人都不敢看到结局,许多人看完它从此不愿再碰手机,他就是大名鼎鼎的暗黑神作《XXX》……
|
||
3.这到底是一部什么样的电影,能被55个国家公开抵制,它甚至为了上映,不惜删减掉整整47分钟的剧情……
|
||
4.是什么样的一个人被豆瓣网友称之为史上最牛P的老太太,都70岁了还要去贩毒……
|
||
5.他是M国历史上最NB/惨/猖狂/冤枉……的囚犯/抢劫犯/……
|
||
6.这到底是一部什么样的影片,他一个人就拿了4个顶级奖项,第一季8.7分,第二季直接干到9.5分,11万人给出5星好评,一共也就6集,却斩获26项国际大奖,看过的人都说,他是近年来最好的xxx剧,几乎成为了近年来xxx剧的标杆。故事发生在……
|
||
7.他是国产电影的巅峰佳作,更是许多80-90后的青春启蒙,曾入选《时代》周刊,获得年度佳片第一,可在国内却被尘封多年,至今为止都无法在各大视频网站看到完整资源,他就是《xxxxxx》
|
||
8.这是一部让所有人看得荷尔蒙飙升的爽片……
|
||
9.他被成为世界上最虐心绝望的电影,至今无人敢看第二遍,很难想象,他是根据真实事件改编而来……
|
||
10.这大概是有史以来最令人不寒而栗的电影,当年一经放映,就点燃了无数人的怒火,不少观众不等影片放完,就愤然离场,它比《xxx》更让人绝望,比比《xxx》更让人xxx,能坚持看完全片的人,更是万中无一,包括我。甚至观影结束后,有无数人抵制投诉这部电影,认为影片的导演玩弄了他们的情感!他是顶级神作《xxxx》……
|
||
11.这是X国有史以来最高赞的一部悬疑电影,然而却因为某些原因,国内90%的人,没能看过这部片子,他就是《xxx》……
|
||
12.有这样一部电影,这辈子,你绝对不想再看第二遍,并不是它剧情烂俗,而是它的结局你根本承受不起/想象不到……甚至有80%的观众在观影途中情绪崩溃中途离场,更让许多同行都不想解说这部电影,他就是大名鼎鼎的暗黑神作《xxx》…
|
||
13.它被誉为史上最牛悬疑片无数人在看完它时候,一个月不敢照镜子,这样一部仅适合部分年龄段观看的影片,究竟有什么样的魅力,竟然获得某瓣8.2的高分,很多人说这部电影到处都是看点,他就是《xxx》….
|
||
14.这是一部在某瓣上被70万人打出9.3分的高分的电影……到底是一部什么样的电影,能够在某瓣上被70万人打出9.3分的高分……
|
||
15.这是一部细思极恐的科幻大片,整部电影颠覆你的三观,它的名字叫……
|
||
16.史上最震撼的灾难片,每一点都不舍得快进的电影,他叫……
|
||
17.今天给大家带来一部基于真实事件改编的(主题介绍一句……)的故事片,这是一部连环悬疑剧,如果不看到最后绝对想不到结局竟然是这样的反转……
|
||
|
||
### 方式:情景式、假设性开头
|
||
1.他叫……你以为他是……的吗?不。他是来……然后开始叙述
|
||
2.你知道……吗?原来……然后开始叙述
|
||
3.如果给你….,你会怎么样?
|
||
4.如果你是….,你会怎么样?
|
||
|
||
### 方式三:以国家为开头!简单明了。话语不需要多,但是需要讲解透彻!
|
||
1.这是一部韩国最新灾难片,你一定没有看过……
|
||
2.这是一部印度高分悬疑片,
|
||
3.这部电影原在日本因为……而被下架,
|
||
4.这是韩国最恐怖的犯罪片,
|
||
5.这是最近国产片评分最高的悬疑片
|
||
以上均按照影片国家来区分,然后简单介绍下主题。就可以开始直接叙述作品。也是一个很不错的方法!
|
||
|
||
### 方式四:如何自由发挥
|
||
正常情况下,每一部电影都有非常关键的一个大纲,这部电影的主题其实是可以用一句话、两句话概括的。只要看懂电影,就能找到这个主题大纲。
|
||
我们提前把这个主题大纲给放到影视最前面,作为我们的前三句的文案,将会非常吸引人!
|
||
|
||
例如:
|
||
1.这不是电影,这是真实故事。两个女人和一个男人被关在可桑拿室。喊破喉咙也没有一丝回音。窒息感和热度让人抓狂,故事就是从这里开始!
|
||
2.如果你男朋友出轨了,他不爱你了,还你家暴,怎么办?接下来这部电影就会教你如何让老公服服帖帖的呆在你身边!女主是一个……开始叙述了。
|
||
3.他力大无穷,双眼放光,这不是拯救地球的超人吗?然而不是。今天给大家推荐的这部电影叫……
|
||
|
||
以上是需要看完影片,看懂影片,然后从里面提炼出精彩的几句话,当然是比较难的,当你不会自己去总结前三句的经典的话。可以用前面方式一二三!
|
||
实在想不出来如何去提炼,可以去搜索这部剧,对这部电影的影评,也会给你带过来很多灵感的!
|
||
|
||
|
||
## 内容部分
|
||
开头有了,剩下的就是开始叙述正文了。主题介绍是根据影片内容来介绍,如果实在自己想不出来。可以参考其他平台中对这部电影的精彩介绍,提取2-3句也可以!
|
||
正常情况下,我们叙述的时候其实是非常简单的,把整部电影主题线,叙述下来,其实文案就是加些修饰词把电影重点内容叙述下来。加上一些修饰词。
|
||
|
||
以悬疑剧为例:
|
||
竟然,突然,原来,但是,但,可是,结果,直到,如果,而,果然,发现,只是,出奇,之后,没错,不止,更是,当然,因为,所以……等!
|
||
以上是比较常用的,当然还有很多,需要靠平时思考和阅读的积累!因悬疑剧会有多处反转剧情。所以需要用到反转的修饰词比较多,只有用到这些词。才能体现出各种反转剧情!
|
||
建议大家在刚开始做的时候,做8分钟内的,不要太长,分成三段。每段也是不超过三分钟,这样时间刚好。可以比较好的完成完播率!
|
||
|
||
|
||
## 结尾部分
|
||
最后故事的结局,除了反转,可以来点人生的道理!如果刚开始不会,可以不写。
|
||
后面水平越来越高的时候,可以进行人生道理的讲评。
|
||
|
||
比如:这部电影告诉我们……
|
||
类似于哲理性质的,作为一个总结!
|
||
也可以把最后的影视反转,原生放出来,留下悬念。
|
||
|
||
比如:也可以总结下这部短片如何的好,推荐/值得大家去观看之类的话语。
|
||
其实就是给我们的作品来一个总结,总结我们所做的三个视频,有开始就要有结束。这个结束不一定是固定的模版。但是视频一定要有结尾。让人感觉有头有尾才最舒服!
|
||
做解说第一次,可能会做两天。第二次可能就需要一天了。慢慢的。时间缩短到8个小时之内是我们平的制作全部时间!
|
||
|
||
"""
|
||
|
||
|
||
def _generate_response(prompt: str) -> str:
|
||
content = ""
|
||
llm_provider = config.app.get("llm_provider", "openai")
|
||
logger.info(f"llm provider: {llm_provider}")
|
||
if llm_provider == "g4f":
|
||
model_name = config.app.get("g4f_model_name", "")
|
||
if not model_name:
|
||
model_name = "gpt-3.5-turbo-16k-0613"
|
||
import g4f
|
||
|
||
content = g4f.ChatCompletion.create(
|
||
model=model_name,
|
||
messages=[{"role": "user", "content": prompt}],
|
||
)
|
||
else:
|
||
api_version = "" # for azure
|
||
if llm_provider == "moonshot":
|
||
api_key = config.app.get("moonshot_api_key")
|
||
model_name = config.app.get("moonshot_model_name")
|
||
base_url = "https://api.moonshot.cn/v1"
|
||
elif llm_provider == "ollama":
|
||
# api_key = config.app.get("openai_api_key")
|
||
api_key = "ollama" # any string works but you are required to have one
|
||
model_name = config.app.get("ollama_model_name")
|
||
base_url = config.app.get("ollama_base_url", "")
|
||
if not base_url:
|
||
base_url = "http://localhost:11434/v1"
|
||
elif llm_provider == "openai":
|
||
api_key = config.app.get("openai_api_key")
|
||
model_name = config.app.get("openai_model_name")
|
||
base_url = config.app.get("openai_base_url", "")
|
||
if not base_url:
|
||
base_url = "https://api.openai.com/v1"
|
||
elif llm_provider == "oneapi":
|
||
api_key = config.app.get("oneapi_api_key")
|
||
model_name = config.app.get("oneapi_model_name")
|
||
base_url = config.app.get("oneapi_base_url", "")
|
||
elif llm_provider == "azure":
|
||
api_key = config.app.get("azure_api_key")
|
||
model_name = config.app.get("azure_model_name")
|
||
base_url = config.app.get("azure_base_url", "")
|
||
api_version = config.app.get("azure_api_version", "2024-02-15-preview")
|
||
elif llm_provider == "gemini":
|
||
api_key = config.app.get("gemini_api_key")
|
||
model_name = config.app.get("gemini_model_name")
|
||
base_url = "***"
|
||
elif llm_provider == "qwen":
|
||
api_key = config.app.get("qwen_api_key")
|
||
model_name = config.app.get("qwen_model_name")
|
||
base_url = "***"
|
||
elif llm_provider == "cloudflare":
|
||
api_key = config.app.get("cloudflare_api_key")
|
||
model_name = config.app.get("cloudflare_model_name")
|
||
account_id = config.app.get("cloudflare_account_id")
|
||
base_url = "***"
|
||
elif llm_provider == "deepseek":
|
||
api_key = config.app.get("deepseek_api_key")
|
||
model_name = config.app.get("deepseek_model_name")
|
||
base_url = config.app.get("deepseek_base_url")
|
||
if not base_url:
|
||
base_url = "https://api.deepseek.com"
|
||
elif llm_provider == "ernie":
|
||
api_key = config.app.get("ernie_api_key")
|
||
secret_key = config.app.get("ernie_secret_key")
|
||
base_url = config.app.get("ernie_base_url")
|
||
model_name = "***"
|
||
if not secret_key:
|
||
raise ValueError(
|
||
f"{llm_provider}: secret_key is not set, please set it in the config.toml file."
|
||
)
|
||
else:
|
||
raise ValueError(
|
||
"llm_provider is not set, please set it in the config.toml file."
|
||
)
|
||
|
||
if not api_key:
|
||
raise ValueError(
|
||
f"{llm_provider}: api_key is not set, please set it in the config.toml file."
|
||
)
|
||
if not model_name:
|
||
raise ValueError(
|
||
f"{llm_provider}: model_name is not set, please set it in the config.toml file."
|
||
)
|
||
if not base_url:
|
||
raise ValueError(
|
||
f"{llm_provider}: base_url is not set, please set it in the config.toml file."
|
||
)
|
||
|
||
if llm_provider == "qwen":
|
||
import dashscope
|
||
from dashscope.api_entities.dashscope_response import GenerationResponse
|
||
|
||
dashscope.api_key = api_key
|
||
response = dashscope.Generation.call(
|
||
model=model_name, messages=[{"role": "user", "content": prompt}]
|
||
)
|
||
if response:
|
||
if isinstance(response, GenerationResponse):
|
||
status_code = response.status_code
|
||
if status_code != 200:
|
||
raise Exception(
|
||
f'[{llm_provider}] returned an error response: "{response}"'
|
||
)
|
||
|
||
content = response["output"]["text"]
|
||
return content.replace("\n", "")
|
||
else:
|
||
raise Exception(
|
||
f'[{llm_provider}] returned an invalid response: "{response}"'
|
||
)
|
||
else:
|
||
raise Exception(f"[{llm_provider}] returned an empty response")
|
||
|
||
if llm_provider == "gemini":
|
||
import google.generativeai as genai
|
||
|
||
genai.configure(api_key=api_key, transport="rest")
|
||
|
||
generation_config = {
|
||
"temperature": 0.5,
|
||
"top_p": 1,
|
||
"top_k": 1,
|
||
"max_output_tokens": 2048,
|
||
}
|
||
|
||
safety_settings = [
|
||
{
|
||
"category": "HARM_CATEGORY_HARASSMENT",
|
||
"threshold": "BLOCK_ONLY_HIGH",
|
||
},
|
||
{
|
||
"category": "HARM_CATEGORY_HATE_SPEECH",
|
||
"threshold": "BLOCK_ONLY_HIGH",
|
||
},
|
||
{
|
||
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
||
"threshold": "BLOCK_ONLY_HIGH",
|
||
},
|
||
{
|
||
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
||
"threshold": "BLOCK_ONLY_HIGH",
|
||
},
|
||
]
|
||
|
||
model = genai.GenerativeModel(
|
||
model_name=model_name,
|
||
generation_config=generation_config,
|
||
safety_settings=safety_settings,
|
||
)
|
||
|
||
try:
|
||
response = model.generate_content(prompt)
|
||
candidates = response.candidates
|
||
generated_text = candidates[0].content.parts[0].text
|
||
except (AttributeError, IndexError) as e:
|
||
print("Gemini Error:", e)
|
||
|
||
return generated_text
|
||
|
||
if llm_provider == "cloudflare":
|
||
import requests
|
||
|
||
response = requests.post(
|
||
f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/{model_name}",
|
||
headers={"Authorization": f"Bearer {api_key}"},
|
||
json={
|
||
"messages": [
|
||
{"role": "system", "content": "You are a friendly assistant"},
|
||
{"role": "user", "content": prompt},
|
||
]
|
||
},
|
||
)
|
||
result = response.json()
|
||
logger.info(result)
|
||
return result["result"]["response"]
|
||
|
||
if llm_provider == "ernie":
|
||
import requests
|
||
|
||
params = {
|
||
"grant_type": "client_credentials",
|
||
"client_id": api_key,
|
||
"client_secret": secret_key,
|
||
}
|
||
access_token = (
|
||
requests.post("https://aip.baidubce.com/oauth/2.0/token", params=params)
|
||
.json()
|
||
.get("access_token")
|
||
)
|
||
url = f"{base_url}?access_token={access_token}"
|
||
|
||
payload = json.dumps(
|
||
{
|
||
"messages": [{"role": "user", "content": prompt}],
|
||
"temperature": 0.5,
|
||
"top_p": 0.8,
|
||
"penalty_score": 1,
|
||
"disable_search": False,
|
||
"enable_citation": False,
|
||
"response_format": "text",
|
||
}
|
||
)
|
||
headers = {"Content-Type": "application/json"}
|
||
|
||
response = requests.request(
|
||
"POST", url, headers=headers, data=payload
|
||
).json()
|
||
return response.get("result")
|
||
|
||
if llm_provider == "azure":
|
||
client = AzureOpenAI(
|
||
api_key=api_key,
|
||
api_version=api_version,
|
||
azure_endpoint=base_url,
|
||
)
|
||
else:
|
||
client = OpenAI(
|
||
api_key=api_key,
|
||
base_url=base_url,
|
||
)
|
||
|
||
response = client.chat.completions.create(
|
||
model=model_name, messages=[{"role": "user", "content": prompt}]
|
||
)
|
||
if response:
|
||
if isinstance(response, ChatCompletion):
|
||
content = response.choices[0].message.content
|
||
else:
|
||
raise Exception(
|
||
f'[{llm_provider}] returned an invalid response: "{response}", please check your network '
|
||
f"connection and try again."
|
||
)
|
||
else:
|
||
raise Exception(
|
||
f"[{llm_provider}] returned an empty response, please check your network connection and try again."
|
||
)
|
||
|
||
return content.replace("\n", "")
|
||
|
||
|
||
def compress_video(input_path: str, output_path: str):
|
||
"""
|
||
压缩视频文件
|
||
Args:
|
||
input_path: 输入视频文件路径
|
||
output_path: 输出压缩后的视频文件路径
|
||
"""
|
||
ffmpeg_path = "E:\\projects\\NarratoAI_v0.1.2\\lib\\ffmpeg\\ffmpeg-7.0-essentials_build\\ffmpeg.exe" # 指定 ffmpeg 的完整路径
|
||
|
||
# 如果压缩后的视频文件已经存在,则直接使用
|
||
if os.path.exists(output_path):
|
||
logger.info(f"压缩视频文件已存在: {output_path}")
|
||
return
|
||
|
||
try:
|
||
command = [
|
||
ffmpeg_path,
|
||
"-i", input_path,
|
||
"-c:v", "h264",
|
||
"-b:v", "500k",
|
||
"-c:a", "aac",
|
||
"-b:a", "128k",
|
||
output_path
|
||
]
|
||
subprocess.run(command, check=True)
|
||
except subprocess.CalledProcessError as e:
|
||
logger.error(f"视频压缩失败: {e}")
|
||
raise
|
||
|
||
|
||
def generate_script(
|
||
video_path: str, video_plot: str, video_name: str, language: str = "zh-CN", progress_text: st.empty = st.empty()
|
||
) -> str:
|
||
"""
|
||
生成视频剪辑脚本
|
||
Args:
|
||
video_path: 视频文件路径
|
||
video_plot: 视频剧情内容
|
||
video_name: 视频名称
|
||
language: 语言
|
||
|
||
Returns:
|
||
str: 生成的脚本
|
||
"""
|
||
# 1. 压缩视频
|
||
progress_text.text("压缩视频中...")
|
||
compressed_video_path = f"{os.path.splitext(video_path)[0]}_compressed.mp4"
|
||
compress_video(video_path, compressed_video_path)
|
||
|
||
# 2. 转录视频
|
||
transcription = gemini_video_transcription(video_name=video_name, video_path=compressed_video_path, language=language, progress_text=progress_text)
|
||
|
||
# # 清理压缩后的视频文件
|
||
# try:
|
||
# os.remove(compressed_video_path)
|
||
# except OSError as e:
|
||
# logger.warning(f"删除压缩视频文件失败: {e}")
|
||
|
||
# 3. 编写解说文案
|
||
progress_text.text("解说文案中...")
|
||
script = writing_short_play(video_plot, video_name)
|
||
|
||
# 4. 文案匹配画面
|
||
progress_text.text("画面匹配中...")
|
||
matched_script = screen_matching(huamian=transcription, wenan=script)
|
||
|
||
return matched_script
|
||
|
||
|
||
def generate_terms(video_subject: str, video_script: str, amount: int = 5) -> List[str]:
|
||
prompt = f"""
|
||
# Role: Video Search Terms Generator
|
||
|
||
## Goals:
|
||
Generate {amount} search terms for stock videos, depending on the subject of a video.
|
||
|
||
## Constrains:
|
||
1. the search terms are to be returned as a json-array of strings.
|
||
2. each search term should consist of 1-3 words, always add the main subject of the video.
|
||
3. you must only return the json-array of strings. you must not return anything else. you must not return the script.
|
||
4. the search terms must be related to the subject of the video.
|
||
5. reply with english search terms only.
|
||
|
||
## Output Example:
|
||
["search term 1", "search term 2", "search term 3","search term 4","search term 5"]
|
||
|
||
## Context:
|
||
### Video Subject
|
||
{video_subject}
|
||
|
||
### Video Script
|
||
{video_script}
|
||
|
||
Please note that you must use English for generating video search terms; Chinese is not accepted.
|
||
""".strip()
|
||
|
||
logger.info(f"subject: {video_subject}")
|
||
|
||
search_terms = []
|
||
response = ""
|
||
for i in range(_max_retries):
|
||
try:
|
||
response = _generate_response(prompt)
|
||
search_terms = json.loads(response)
|
||
if not isinstance(search_terms, list) or not all(
|
||
isinstance(term, str) for term in search_terms
|
||
):
|
||
logger.error("response is not a list of strings.")
|
||
continue
|
||
|
||
except Exception as e:
|
||
logger.warning(f"failed to generate video terms: {str(e)}")
|
||
if response:
|
||
match = re.search(r"\[.*]", response)
|
||
if match:
|
||
try:
|
||
search_terms = json.loads(match.group())
|
||
except Exception as e:
|
||
logger.warning(f"failed to generate video terms: {str(e)}")
|
||
pass
|
||
|
||
if search_terms and len(search_terms) > 0:
|
||
break
|
||
if i < _max_retries:
|
||
logger.warning(f"failed to generate video terms, trying again... {i + 1}")
|
||
|
||
logger.success(f"completed: \n{search_terms}")
|
||
return search_terms
|
||
|
||
|
||
def gemini_video2json(video_origin_name: str, video_origin_path: str, video_plot: str, language: str) -> str:
|
||
'''
|
||
使用 gemini-1.5-pro 进行影视解析
|
||
Args:
|
||
video_origin_name: str - 影视作品的原始名称
|
||
video_origin_path: str - 影视作品的原始路径
|
||
video_plot: str - 影视作品的简介或剧情概述
|
||
|
||
Return:
|
||
str - 解析后的 JSON 格式字符串
|
||
'''
|
||
api_key = config.app.get("gemini_api_key")
|
||
model_name = config.app.get("gemini_model_name")
|
||
|
||
gemini.configure(api_key=api_key)
|
||
model = gemini.GenerativeModel(model_name=model_name)
|
||
|
||
prompt = """
|
||
**角色设定:**
|
||
你是一位影视解说专家,擅长根据剧情生成引人入胜的短视频解说文案,特别熟悉适用于TikTok/抖音风格的快速、抓人视频解说。
|
||
|
||
**任务目标:**
|
||
1. 根据给定剧情,详细描述画面,重点突出重要场景和情节。
|
||
2. 生成符合TikTok/抖音风格的解说,节奏紧凑,语言简洁,吸引观众。
|
||
3. 解说的时候需要解说一段播放一段原视频,原视频一般为有台词的片段,原视频的控制有 OST 字段控制。
|
||
4. 结果输出为JSON格式,包含字段:
|
||
- "picture":画面描述
|
||
- "timestamp":画面出现的时间范围
|
||
- "narration":解说内容
|
||
- "OST": 是否开启原声(true / false)
|
||
|
||
**输入示例:**
|
||
```text
|
||
在一个<EFBFBD><EFBFBD><EFBFBD>暗的小巷中,主角缓慢走进,四周静谧无声,只有远处隐隐传来猫的叫声。突然,背后出现一个神秘的身影。
|
||
```
|
||
|
||
**输出格式:**
|
||
```json
|
||
[
|
||
{
|
||
"picture": "黑暗的小巷,主角缓慢走入,四周安静,远处传来猫叫声。",
|
||
"timestamp": "00:00-00:17",
|
||
"narration": "静谧的小巷里,主角步步前行,气氛渐渐变得压抑。"
|
||
"OST": False
|
||
},
|
||
{
|
||
"picture": "神秘身影突然出现,紧张气氛加剧。",
|
||
"timestamp": "00:17-00:39",
|
||
"narration": "原声播放"
|
||
"OST": True
|
||
}
|
||
]
|
||
```
|
||
|
||
**提示:**
|
||
- 文案要简短有力,契合短视频平台用户的观赏习惯。
|
||
- 保持强烈的悬念和情感代入,吸引观众继续观看。
|
||
- 解说一段后播放一段原声,原声内容尽量和解说匹配。
|
||
- 文案语言为:%s
|
||
- 剧情内容:%s (为空则忽略)
|
||
|
||
""" % (language, video_plot)
|
||
|
||
logger.debug(f"视频名称: {video_origin_name}")
|
||
# try:
|
||
gemini_video_file = gemini.upload_file(video_origin_path)
|
||
logger.debug(f"上传视频至 Google cloud 成功: {gemini_video_file.name}")
|
||
while gemini_video_file.state.name == "PROCESSING":
|
||
import time
|
||
time.sleep(1)
|
||
gemini_video_file = gemini.get_file(gemini_video_file.name)
|
||
logger.debug(f"视频当前状态(ACTIVE才可用): {gemini_video_file.state.name}")
|
||
if gemini_video_file.state.name == "FAILED":
|
||
raise ValueError(gemini_video_file.state.name)
|
||
# except Exception as err:
|
||
# logger.error(f"上传视频至 Google cloud 失败, 请检查 VPN 配置和 APIKey 是否正确 \n{traceback.format_exc()}")
|
||
# raise TimeoutError(f"上传视频至 Google cloud 失败, 请检查 VPN 配置和 APIKey 是否正确; {err}")
|
||
|
||
streams = model.generate_content([prompt, gemini_video_file], stream=True)
|
||
response = []
|
||
for chunk in streams:
|
||
response.append(chunk.text)
|
||
|
||
response = "".join(response)
|
||
logger.success(f"llm response: \n{response}")
|
||
|
||
return response
|
||
|
||
|
||
def gemini_video_transcription(video_name: str, video_path: str, language: str, progress_text: st.empty = ""):
|
||
'''
|
||
使用 gemini-1.5-xxx 进行视频画面转录
|
||
'''
|
||
api_key = config.app.get("gemini_api_key")
|
||
model_name = config.app.get("gemini_model_name")
|
||
|
||
gemini.configure(api_key=api_key)
|
||
model = gemini.GenerativeModel(model_name=model_name)
|
||
|
||
prompt = """
|
||
Please transcribe the audio, include timestamps, and provide visual descriptions, then output in JSON format.
|
||
Please use %s output
|
||
Use this JSON schema:
|
||
|
||
Graphics = {"timestamp": "MM:SS-MM:SS", "picture": "str", "quotes": "str"(If no one says anything, use an empty string instead.)}
|
||
Return: list[Graphics]
|
||
""" % language
|
||
|
||
logger.debug(f"视频名称: {video_name}")
|
||
try:
|
||
progress_text.text("上传视频中...")
|
||
gemini_video_file = gemini.upload_file(video_path)
|
||
logger.debug(f"上传视频至 Google cloud 成功: {gemini_video_file.name}")
|
||
while gemini_video_file.state.name == "PROCESSING":
|
||
import time
|
||
time.sleep(1)
|
||
gemini_video_file = gemini.get_file(gemini_video_file.name)
|
||
progress_text.text(f"解析视频中, 当前状态: {gemini_video_file.state.name}")
|
||
# logger.debug(f"视频当前状态(ACTIVE才可用): {gemini_video_file.state.name}")
|
||
if gemini_video_file.state.name == "FAILED":
|
||
raise ValueError(gemini_video_file.state.name)
|
||
except ResumableUploadError as err:
|
||
logger.error(f"上传视频至 Google cloud 失败, 用户的位置信息不支持用于该API; \n{traceback.format_exc()}")
|
||
return ""
|
||
except FailedPrecondition as err:
|
||
logger.error(f"400 用户位置不支持 Google API 使用。\n{traceback.format_exc()}")
|
||
return ""
|
||
|
||
progress_text.text("视频转录中...")
|
||
response = model.generate_content(
|
||
[prompt, gemini_video_file],
|
||
safety_settings={
|
||
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
||
}
|
||
)
|
||
logger.success("视频转录成功")
|
||
return response.text
|
||
|
||
|
||
def writing_movie(video_plot, video_name):
|
||
"""
|
||
影视解说(电影解说)
|
||
"""
|
||
api_key = config.app.get("gemini_api_key")
|
||
model_name = config.app.get("gemini_model_name")
|
||
|
||
gemini.configure(api_key=api_key)
|
||
model = gemini.GenerativeModel(model_name)
|
||
|
||
prompt = f"""
|
||
**角色设定:**
|
||
你是一名有10年经验的影视解说文案的创作者,
|
||
下面是关于如何写解说文案的方法 {Method},请认真阅读它,之后我会给你一部影视作品的名称,然后让你写一篇文案
|
||
请根据方法撰写 《{video_name}》的影视解说文案,文案要符合以下要求:
|
||
|
||
**任务目标:**
|
||
1. 文案字数在 1500字左右,严格要求字数,最低不得少于 1000字。
|
||
2. 避免使用 markdown 格式输出文案。
|
||
3. 仅输出解说文案,不输出任何其他内容。
|
||
4. 不要包含小标题,每个段落以 \n 进行分隔。
|
||
"""
|
||
response = model.generate_content(
|
||
prompt,
|
||
generation_config=gemini.types.GenerationConfig(
|
||
candidate_count=1,
|
||
temperature=1.3,
|
||
),
|
||
safety_settings={
|
||
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
||
}
|
||
)
|
||
logger.debug(response.text)
|
||
logger.debug("字数:", len(response.text))
|
||
return response.text
|
||
|
||
|
||
def writing_short_play(video_plot: str, video_name: str):
|
||
"""
|
||
影视解说(短剧解说)
|
||
"""
|
||
api_key = config.app.get("gemini_api_key")
|
||
model_name = config.app.get("gemini_model_name")
|
||
|
||
gemini.configure(api_key=api_key)
|
||
model = gemini.GenerativeModel(model_name)
|
||
|
||
if not video_plot:
|
||
raise ValueError("短剧的简介不能为空")
|
||
if not video_name:
|
||
raise ValueError("短剧名称不能为空")
|
||
|
||
prompt = f"""
|
||
**角色设定:**
|
||
你是一名有10年经验的短剧解说文案的创作者,
|
||
下面是关于如何写解说文案的方法 {Method},请认真阅读它,之后我会给你一部短剧作品的简介,然后让你写一篇解说文案
|
||
请根据方法撰写 《{video_name}》的解说文案,《{video_name}》的大致剧情如下: {video_plot}
|
||
文案要符合以下要求:
|
||
|
||
**任务目标:**
|
||
1. 文案字数在 800字左右,严格要求字数,最低不得少于 600字。
|
||
2. 避免使用 markdown 格式输出文案。
|
||
3. 仅输出解说文案,不输出任何其他内容。
|
||
4. 不要包含小标题,每个段落以 \\n 进行分隔。
|
||
"""
|
||
response = model.generate_content(
|
||
prompt,
|
||
generation_config=gemini.types.GenerationConfig(
|
||
candidate_count=1,
|
||
temperature=1.0,
|
||
),
|
||
safety_settings={
|
||
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
||
}
|
||
)
|
||
logger.success("解说文案生成成功")
|
||
return response.text
|
||
|
||
|
||
def screen_matching(huamian: str, wenan: str):
|
||
"""
|
||
画面匹配
|
||
"""
|
||
api_key = config.app.get("gemini_api_key")
|
||
model_name = config.app.get("gemini_model_name")
|
||
|
||
gemini.configure(api_key=api_key)
|
||
model = gemini.GenerativeModel(model_name)
|
||
|
||
if not huamian:
|
||
raise ValueError("画面不能为空")
|
||
if not wenan:
|
||
raise ValueError("文案不能为空")
|
||
|
||
prompt = """
|
||
你是一名有10年经验的影视解说创作者,
|
||
你的任务是根据画面描述文本和解说文案,匹配出每段解说文案对应的画面时间戳, 结果以 json 格式输出。
|
||
|
||
画面描述文本和文案(由 XML 标记<SOURCE_TEXT><SOURCE_TEXT>和 <COPYWRITER><COPYWRITER>分隔)如下所示:
|
||
<SOURCE_TEXT>
|
||
%s
|
||
</SOURCE_TEXT>
|
||
|
||
<COPYWRITER>
|
||
%s
|
||
</COPYWRITER>
|
||
|
||
Use this JSON schema:
|
||
script = {'picture': str, 'timestamp': str, "narration": str, "OST": bool}
|
||
Return: list[script]
|
||
""" % (huamian, wenan)
|
||
response = model.generate_content(
|
||
prompt,
|
||
generation_config=gemini.types.GenerationConfig(
|
||
candidate_count=1,
|
||
temperature=1.0,
|
||
),
|
||
safety_settings={
|
||
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
||
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
||
}
|
||
)
|
||
logger.success("匹配成功")
|
||
return response.text
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 1. 视频转录
|
||
# video_subject = "第二十条之无罪释放"
|
||
# video_path = "../../resource/videos/test01.mp4"
|
||
# language = "zh-CN"
|
||
# gemini_video_transcription(video_subject, video_path, language)
|
||
|
||
# 2. 解说文案
|
||
video_path = "E:\\projects\\NarratoAI\\resource\\videos\\2.mp4"
|
||
video_plot = """
|
||
李自忠拿着儿子李牧名下的存折,去银行取钱给儿子救命,却被要求证明"你儿子是你儿子"。
|
||
走投无路时碰到银行被抢劫,劫匪给了他两沓钱救命,李自忠却因此被银行以抢劫罪起诉,并顶格判处20年有期徒刑。
|
||
苏醒后的李牧坚决为父亲做无罪辩护,面对银行的顶级律师团队,他一个法学院大一学生,能否力挽狂澜,创作奇迹?挥法律之利剑 ,持正义之天平!
|
||
"""
|
||
res = generate_script(video_path, video_plot, video_name="第二十条之无罪释放")
|
||
# res = generate_script(video_path, video_plot, video_name="海岸")
|
||
print("res \n", res)
|