mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-12 11:22:51 +00:00
- 将视频脚本生成相关代码从 script_settings.py 移动到新的 generate_script_docu.py 文件 - 新增 base.py 文件,提取公共工具函数 - 优化代码结构,提高可维护性和可读性- 重构函数名称,更清晰地反映功能
294 lines
13 KiB
Python
294 lines
13 KiB
Python
# 纪录片脚本生成
|
|
import os
|
|
import json
|
|
import time
|
|
import asyncio
|
|
import traceback
|
|
import requests
|
|
import streamlit as st
|
|
from loguru import logger
|
|
from requests.adapters import HTTPAdapter
|
|
from urllib3.util.retry import Retry
|
|
|
|
from app.config import config
|
|
from app.utils.script_generator import ScriptProcessor
|
|
from app.utils import utils, video_processor, video_processor_v2, qwenvl_analyzer
|
|
from webui.tools.base import create_vision_analyzer, get_batch_files, get_batch_timestamps
|
|
|
|
|
|
def generate_script_docu(tr, params):
|
|
"""
|
|
生成 纪录片 视频脚本
|
|
"""
|
|
progress_bar = st.progress(0)
|
|
status_text = st.empty()
|
|
|
|
def update_progress(progress: float, message: str = ""):
|
|
progress_bar.progress(progress)
|
|
if message:
|
|
status_text.text(f"{progress}% - {message}")
|
|
else:
|
|
status_text.text(f"进度: {progress}%")
|
|
|
|
try:
|
|
with st.spinner("正在生成脚本..."):
|
|
if not params.video_origin_path:
|
|
st.error("请先选择视频文件")
|
|
return
|
|
|
|
# ===================提取键帧===================
|
|
update_progress(10, "正在提取关键帧...")
|
|
|
|
# 创建临时目录用于存储关键帧
|
|
keyframes_dir = os.path.join(utils.temp_dir(), "keyframes")
|
|
video_hash = utils.md5(params.video_origin_path + str(os.path.getmtime(params.video_origin_path)))
|
|
video_keyframes_dir = os.path.join(keyframes_dir, video_hash)
|
|
|
|
# 检查是否已经提取过关键帧
|
|
keyframe_files = []
|
|
if os.path.exists(video_keyframes_dir):
|
|
# 取已有的关键帧文件
|
|
for filename in sorted(os.listdir(video_keyframes_dir)):
|
|
if filename.endswith('.jpg'):
|
|
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
|
|
|
|
if keyframe_files:
|
|
logger.info(f"使用已缓存的关键帧: {video_keyframes_dir}")
|
|
st.info(f"使用已缓存的关键帧,如需重新提取请删除目录: {video_keyframes_dir}")
|
|
update_progress(20, f"使用已缓存关键帧,共 {len(keyframe_files)} 帧")
|
|
|
|
# 如果没有缓存的关键帧,则进行提取
|
|
if not keyframe_files:
|
|
try:
|
|
# 确保目录存在
|
|
os.makedirs(video_keyframes_dir, exist_ok=True)
|
|
|
|
# 初始化视频处理器
|
|
if config.frames.get("version") == "v2":
|
|
processor = video_processor_v2.VideoProcessor(params.video_origin_path)
|
|
# 处理视频并提取关键帧
|
|
processor.process_video_pipeline(
|
|
output_dir=video_keyframes_dir,
|
|
skip_seconds=st.session_state.get('skip_seconds'),
|
|
threshold=st.session_state.get('threshold')
|
|
)
|
|
else:
|
|
processor = video_processor.VideoProcessor(params.video_origin_path)
|
|
# 处理视频并提取关键帧
|
|
processor.process_video(
|
|
output_dir=video_keyframes_dir,
|
|
skip_seconds=0
|
|
)
|
|
|
|
# 获取所有关键文件路径
|
|
for filename in sorted(os.listdir(video_keyframes_dir)):
|
|
if filename.endswith('.jpg'):
|
|
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
|
|
|
|
if not keyframe_files:
|
|
raise Exception("未提取到任何关键帧")
|
|
|
|
update_progress(20, f"关键帧提取完成,共 {len(keyframe_files)} 帧")
|
|
|
|
except Exception as e:
|
|
# 如果提取失败,清理创建的目录
|
|
try:
|
|
if os.path.exists(video_keyframes_dir):
|
|
import shutil
|
|
shutil.rmtree(video_keyframes_dir)
|
|
except Exception as cleanup_err:
|
|
logger.error(f"清理失败的关键帧目录时出错: {cleanup_err}")
|
|
|
|
raise Exception(f"关键帧提取失败: {str(e)}")
|
|
|
|
# 根据不同的 LLM 提供商处理
|
|
vision_llm_provider = st.session_state.get('vision_llm_providers').lower()
|
|
logger.debug(f"Vision LLM 提供商: {vision_llm_provider}")
|
|
|
|
try:
|
|
# ===================初始化视觉分析器===================
|
|
update_progress(30, "正在初始化视觉分析器...")
|
|
|
|
# 从配置中获取相关配置
|
|
if vision_llm_provider == 'gemini':
|
|
vision_api_key = st.session_state.get('vision_gemini_api_key')
|
|
vision_model = st.session_state.get('vision_gemini_model_name')
|
|
vision_base_url = st.session_state.get('vision_gemini_base_url')
|
|
elif vision_llm_provider == 'qwenvl':
|
|
vision_api_key = st.session_state.get('vision_qwenvl_api_key')
|
|
vision_model = st.session_state.get('vision_qwenvl_model_name', 'qwen-vl-max-latest')
|
|
vision_base_url = st.session_state.get('vision_qwenvl_base_url',
|
|
'https://dashscope.aliyuncs.com/compatible-mode/v1')
|
|
else:
|
|
raise ValueError(f"不支持的视觉分析提供商: {vision_llm_provider}")
|
|
|
|
# 创建视觉分析器实例
|
|
analyzer = create_vision_analyzer(
|
|
provider=vision_llm_provider,
|
|
api_key=vision_api_key,
|
|
model=vision_model,
|
|
base_url=vision_base_url
|
|
)
|
|
|
|
update_progress(40, "正在分析关键帧...")
|
|
|
|
# ===================创建异步事件循环===================
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
|
|
# 执行异步分析
|
|
vision_batch_size = st.session_state.get('vision_batch_size') or config.frames.get("vision_batch_size")
|
|
results = loop.run_until_complete(
|
|
analyzer.analyze_images(
|
|
images=keyframe_files,
|
|
prompt=config.app.get('vision_analysis_prompt'),
|
|
batch_size=vision_batch_size
|
|
)
|
|
)
|
|
loop.close()
|
|
|
|
# ===================处理分析结果===================
|
|
update_progress(60, "正在整理分析结果...")
|
|
|
|
# 合并所有批次的析结果
|
|
frame_analysis = ""
|
|
prev_batch_files = None
|
|
|
|
for result in results:
|
|
if 'error' in result:
|
|
logger.warning(f"批次 {result['batch_index']} 处理出现警告: {result['error']}")
|
|
|
|
# 获取当前批次的文件列表 keyframe_001136_000045.jpg 将 000045 精度提升到 毫秒
|
|
batch_files = get_batch_files(keyframe_files, result, vision_batch_size)
|
|
logger.debug(f"批次 {result['batch_index']} 处理完成,共 {len(batch_files)} 张图片")
|
|
# logger.debug(batch_files)
|
|
|
|
first_timestamp, last_timestamp, _ = get_batch_timestamps(batch_files, prev_batch_files)
|
|
logger.debug(f"处理时间戳: {first_timestamp}-{last_timestamp}")
|
|
|
|
# 添加带时间戳的分析结果
|
|
frame_analysis += f"\n=== {first_timestamp}-{last_timestamp} ===\n"
|
|
frame_analysis += result['response']
|
|
frame_analysis += "\n"
|
|
|
|
# 更新上一个批次的文件
|
|
prev_batch_files = batch_files
|
|
|
|
if not frame_analysis.strip():
|
|
raise Exception("未能生成有效的帧分析结果")
|
|
|
|
# 保存分析结果
|
|
analysis_path = os.path.join(utils.temp_dir(), "frame_analysis.txt")
|
|
with open(analysis_path, 'w', encoding='utf-8') as f:
|
|
f.write(frame_analysis)
|
|
|
|
update_progress(70, "正在生成脚本...")
|
|
|
|
# 从配置中获取文本生成相关配置
|
|
text_provider = config.app.get('text_llm_provider', 'gemini').lower()
|
|
text_api_key = config.app.get(f'text_{text_provider}_api_key')
|
|
text_model = config.app.get(f'text_{text_provider}_model_name')
|
|
text_base_url = config.app.get(f'text_{text_provider}_base_url')
|
|
|
|
# 构建帧内容列表
|
|
frame_content_list = []
|
|
prev_batch_files = None
|
|
|
|
for i, result in enumerate(results):
|
|
if 'error' in result:
|
|
continue
|
|
|
|
batch_files = get_batch_files(keyframe_files, result, vision_batch_size)
|
|
_, _, timestamp_range = get_batch_timestamps(batch_files, prev_batch_files)
|
|
|
|
frame_content = {
|
|
"timestamp": timestamp_range,
|
|
"picture": result['response'],
|
|
"narration": "",
|
|
"OST": 2
|
|
}
|
|
frame_content_list.append(frame_content)
|
|
|
|
logger.debug(f"添加帧内容: 时间范围={timestamp_range}, 分析结果长度={len(result['response'])}")
|
|
|
|
# 更新上一个批次的文件
|
|
prev_batch_files = batch_files
|
|
|
|
if not frame_content_list:
|
|
raise Exception("没有有效的帧内容可以处理")
|
|
|
|
# ===================开始生成文案===================
|
|
update_progress(80, "正在生成文案...")
|
|
# 校验配置
|
|
api_params = {
|
|
"vision_api_key": vision_api_key,
|
|
"vision_model_name": vision_model,
|
|
"vision_base_url": vision_base_url or "",
|
|
"text_api_key": text_api_key,
|
|
"text_model_name": text_model,
|
|
"text_base_url": text_base_url or ""
|
|
}
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
session = requests.Session()
|
|
retry_strategy = Retry(
|
|
total=3,
|
|
backoff_factor=1,
|
|
status_forcelist=[500, 502, 503, 504]
|
|
)
|
|
adapter = HTTPAdapter(max_retries=retry_strategy)
|
|
session.mount("https://", adapter)
|
|
try:
|
|
response = session.post(
|
|
f"{config.app.get('narrato_api_url')}/video/config",
|
|
headers=headers,
|
|
json=api_params,
|
|
timeout=30,
|
|
verify=True
|
|
)
|
|
except Exception as e:
|
|
pass
|
|
custom_prompt = st.session_state.get('custom_prompt', '')
|
|
processor = ScriptProcessor(
|
|
model_name=text_model,
|
|
api_key=text_api_key,
|
|
prompt=custom_prompt,
|
|
base_url=text_base_url or "",
|
|
video_theme=st.session_state.get('video_theme', '')
|
|
)
|
|
|
|
# 处理帧内容生成脚本
|
|
script_result = processor.process_frames(frame_content_list)
|
|
|
|
# 结果转换为JSON字符串
|
|
script = json.dumps(script_result, ensure_ascii=False, indent=2)
|
|
|
|
except Exception as e:
|
|
logger.exception(f"大模型处理过程中发生错误\n{traceback.format_exc()}")
|
|
raise Exception(f"分析失败: {str(e)}")
|
|
|
|
if script is None:
|
|
st.error("生成脚本失败,请检查日志")
|
|
st.stop()
|
|
logger.info(f"脚本生成完成")
|
|
if isinstance(script, list):
|
|
st.session_state['video_clip_json'] = script
|
|
elif isinstance(script, str):
|
|
st.session_state['video_clip_json'] = json.loads(script)
|
|
update_progress(80, "脚本生成完成")
|
|
|
|
time.sleep(0.1)
|
|
progress_bar.progress(100)
|
|
status_text.text("脚本生成完成!")
|
|
st.success("视频脚本生成成功!")
|
|
|
|
except Exception as err:
|
|
st.error(f"生成过程中发生错误: {str(err)}")
|
|
logger.exception(f"生成脚本时发生错误\n{traceback.format_exc()}")
|
|
finally:
|
|
time.sleep(2)
|
|
progress_bar.empty()
|
|
status_text.empty()
|