NarratoAI/config.example.toml
linyq c065800072 feat(webui): 大改动标记1
-重构音频设置面板,增加语音音量、背景音乐等设置
- 添加背景音乐文件选择功能
- 优化字幕设置,支持自定义字体和样式
-调整视频生成流程,支持新音频设置
- 更新文档示例,反映新功能
2024-12-10 18:33:44 +08:00

187 lines
8.2 KiB
TOML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[app]
project_version="0.3.9"
# 支持视频理解的大模型提供商
# gemini
# NarratoAPI
# qwen2-vl (待增加)
vision_llm_provider="gemini"
vision_analysis_prompt = "你是资深视频内容分析专家,擅长分析视频画面信息,分析下面视频画面内容,只输出客观的画面描述不要给任何总结或评价"
########## Vision Gemini API Key
vision_gemini_api_key = ""
vision_gemini_model_name = "gemini-1.5-flash"
########## Vision Qwen API Key
vision_qwenvl_api_key = ""
vision_qwenvl_model_name = "qwen-vl-max-latest"
vision_qwenvl_base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
########### Vision NarratoAPI Key
narrato_api_key = "0N0iEjU77aTqPW4d9YHCmTW2mPrfgWjDmaWAz1lTVTM"
narrato_api_url = "https://narratoinsight.scsmtech.cn/api/v1"
narrato_vision_model = "gemini-1.5-flash"
narrato_vision_key = ""
narrato_llm_model = "gpt-4o"
narrato_llm_key = ""
# 用于生成文案的大模型支持的提供商 (Supported providers):
# openai (默认)
# moonshot (月之暗面)
# oneapi
# g4f
# azure
# qwen (通义千问)
# gemini
text_llm_provider="openai"
########## OpenAI API Key
# Get your API key at https://platform.openai.com/api-keys
text_openai_api_key = ""
text_openai_base_url = "https://api.openai.com/v1"
text_openai_model_name = "gpt-4o-mini"
########## Moonshot API Key
# Visit https://platform.moonshot.cn/console/api-keys to get your API key.
text_moonshot_api_key=""
text_moonshot_base_url = "https://api.moonshot.cn/v1"
text_moonshot_model_name = "moonshot-v1-8k"
########## G4F
# Visit https://github.com/xtekky/gpt4free to get more details
# Supported model list: https://github.com/xtekky/gpt4free/blob/main/g4f/models.py
text_g4f_model_name = "gpt-3.5-turbo"
########## Azure API Key
# Visit https://learn.microsoft.com/zh-cn/azure/ai-services/openai/ to get more details
# API documentation: https://learn.microsoft.com/zh-cn/azure/ai-services/openai/reference
text_azure_api_key = ""
text_azure_base_url=""
text_azure_model_name="gpt-35-turbo" # replace with your model deployment name
text_azure_api_version = "2024-02-15-preview"
########## Gemini API Key
text_gemini_api_key=""
text_gemini_model_name = "gemini-1.5-flash"
########## Qwen API Key
# Visit https://dashscope.console.aliyun.com/apiKey to get your API key
# Visit below links to get more details
# https://tongyi.aliyun.com/qianwen/
# https://help.aliyun.com/zh/dashscope/developer-reference/model-introduction
text_qwen_api_key = ""
text_qwen_model_name = "qwen-plus-1127"
text_qwen_base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
########## DeepSeek API Key
# Visit https://platform.deepseek.com/api_keys to get your API key
text_deepseek_api_key = ""
text_deepseek_base_url = "https://api.deepseek.com"
text_deepseek_model_name = "deepseek-chat"
# 字幕提供商、可选,支持 whisper 和 faster-whisper-large-v2"whisper"
# 默认为 faster-whisper-large-v2 模型地址https://huggingface.co/guillaumekln/faster-whisper-large-v2
subtitle_provider = "faster-whisper-large-v2"
subtitle_enabled = true
# ImageMagick
# 安装后,将自动检测到 ImageMagickWindows 除外!
# 例如,在 Windows 上 "C:\Program Files (x86)\ImageMagick-7.1.1-Q16-HDRI\magick.exe"
# 下载位置 https://imagemagick.org/archive/binaries/ImageMagick-7.1.1-29-Q16-x64-static.exe
# imagemagick_path = "C:\\Program Files (x86)\\ImageMagick-7.1.1-Q16\\magick.exe"
# FFMPEG
#
# 通常情况下ffmpeg 会被自动下载,并且会被自动检测到。
# 但是如果你的环境有问题,无法自动下载,可能会遇到如下错误:
# RuntimeError: No ffmpeg exe could be found.
# Install ffmpeg on your system, or set the IMAGEIO_FFMPEG_EXE environment variable.
# 此时你可以手动下载 ffmpeg 并设置 ffmpeg_path下载地址https://www.gyan.dev/ffmpeg/builds/
# ffmpeg_path = "C:\\Users\\harry\\Downloads\\ffmpeg.exe"
#########################################################################################
# 当视频生成成功后API服务提供的视频下载接入点默认为当前服务的地址和监听端口
# 比如 http://127.0.0.1:8080/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# 如果你需要使用域名对外提供服务一般会用nginx做代理则可以设置为你的域名
# 比如 https://xxxx.com/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# endpoint="https://xxxx.com"
# When the video is successfully generated, the API service provides a download endpoint for the video, defaulting to the service's current address and listening port.
# For example, http://127.0.0.1:8080/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# If you need to provide the service externally using a domain name (usually done with nginx as a proxy), you can set it to your domain name.
# For example, https://xxxx.com/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# endpoint="https://xxxx.com"
endpoint=""
# Video material storage location
# material_directory = "" # Indicates that video materials will be downloaded to the default folder, the default folder is ./storage/cache_videos under the current project
# material_directory = "/user/harry/videos" # Indicates that video materials will be downloaded to a specified folder
# material_directory = "task" # Indicates that video materials will be downloaded to the current task's folder, this method does not allow sharing of already downloaded video materials
# 视频素材存放位置
# material_directory = "" #表示将视频素材下载到默认的文件夹,默认文件夹为当前项目下的 ./storage/cache_videos
# material_directory = "/user/harry/videos" #表示将视频素材下载到指定的文件夹中
# material_directory = "task" #表示将视频素材下载到当前任务的文件夹中,这种方式无法共享已经下载的视频素材
material_directory = ""
# 用于任务的状态管理
enable_redis = false
redis_host = "localhost"
redis_port = 6379
redis_db = 0
redis_password = ""
# 文生视频时的最大并发任务数
max_concurrent_tasks = 5
# webui界面是否显示配置项
hide_config = false
[whisper]
# Only effective when subtitle_provider is "whisper"
# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
# Run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# Run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")
# recommended model_size: "large-v3"
model_size="faster-whisper-large-v2"
# 如果要使用 GPU请设置 device=“cuda”
device="CPU"
compute_type="int8"
[proxy]
### Use a proxy to access the Pexels API
### Format: "http://<username>:<password>@<proxy>:<port>"
### Example: "http://user:pass@proxy:1234"
### Doc: https://requests.readthedocs.io/en/latest/user/advanced/#proxies
http = "http://127.0.0.1:7890"
https = "http://127.0.0.1:7890"
[azure]
# Azure Speech API Key
# Get your API key at https://portal.azure.com/#view/Microsoft_Azure_ProjectOxford/CognitiveServicesHub/~/SpeechServices
speech_key=""
speech_region=""
[frames]
skip_seconds = 0
# threshold差异阈值用于判断两个连续帧之间是否发生了场景切换
# 较小的阈值(如 20更敏感能捕捉到细微的场景变化但可能会误判关键帧图片更多
# 较大的阈值(如 40更保守只捕捉明显的场景切换但可能会漏掉渐变场景关键帧图片更少
# 默认值 30在实践中是一个比较平衡的选择
threshold = 30
version = "v2"
# 大模型单次处理的关键帧数量
vision_batch_size = 5