NarratoAI/webui/components/basic_settings.py
linyq 07c3d540c5 feat(webui): 添加视觉模型连接测试功能
- 新增 test_vision_model_connection 函数,用于测试视觉模型连接
- 在视觉模型设置界面添加测试连接按钮
- 实现对 Gemini 和 NarratoAPI 两种提供商的连接测试
- 优化界面布局,注释掉部分冗余代码
2024-11-18 11:55:11 +08:00

298 lines
11 KiB
Python

import streamlit as st
import os
from app.config import config
from app.utils import utils
def render_basic_settings(tr):
"""渲染基础设置面板"""
with st.expander(tr("Basic Settings"), expanded=False):
config_panels = st.columns(3)
left_config_panel = config_panels[0]
middle_config_panel = config_panels[1]
right_config_panel = config_panels[2]
with left_config_panel:
render_language_settings(tr)
render_proxy_settings(tr)
with middle_config_panel:
render_vision_llm_settings(tr) # 视频分析模型设置
with right_config_panel:
render_text_llm_settings(tr) # 文案生成模型设置
def render_language_settings(tr):
st.subheader(tr("Proxy Settings"))
"""渲染语言设置"""
system_locale = utils.get_system_locale()
i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n")
locales = utils.load_locales(i18n_dir)
display_languages = []
selected_index = 0
for i, code in enumerate(locales.keys()):
display_languages.append(f"{code} - {locales[code].get('Language')}")
if code == st.session_state.get('ui_language', system_locale):
selected_index = i
selected_language = st.selectbox(
tr("Language"),
options=display_languages,
index=selected_index
)
if selected_language:
code = selected_language.split(" - ")[0].strip()
st.session_state['ui_language'] = code
config.ui['language'] = code
def render_proxy_settings(tr):
"""渲染代理设置"""
proxy_url_http = config.proxy.get("http", "") or os.getenv("VPN_PROXY_URL", "")
proxy_url_https = config.proxy.get("https", "") or os.getenv("VPN_PROXY_URL", "")
HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http)
HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https)
if HTTP_PROXY:
config.proxy["http"] = HTTP_PROXY
os.environ["HTTP_PROXY"] = HTTP_PROXY
if HTTPS_PROXY:
config.proxy["https"] = HTTPS_PROXY
os.environ["HTTPS_PROXY"] = HTTPS_PROXY
def test_vision_model_connection(api_key, base_url, model_name, provider, tr):
"""测试视觉模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
if provider.lower() == 'gemini':
import google.generativeai as genai
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
model.generate_content("直接回复我文本'当前网络可用'")
return True, tr("gemini model is available")
except Exception as e:
return False, f"{tr('gemini model is not available')}: {str(e)}"
elif provider.lower() == 'narratoapi':
import requests
try:
# 构建测试请求
headers = {
"Authorization": f"Bearer {api_key}"
}
test_url = f"{base_url.rstrip('/')}/health"
response = requests.get(test_url, headers=headers, timeout=10)
if response.status_code == 200:
return True, tr("NarratoAPI is available")
else:
return False, f"{tr('NarratoAPI is not available')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('NarratoAPI is not available')}: {str(e)}"
else:
return False, f"{tr('Unsupported provider')}: {provider}"
def render_vision_llm_settings(tr):
"""渲染视频分析模型设置"""
st.subheader(tr("Vision Model Settings"))
# 视频分析模型提供商选择
vision_providers = ['Gemini', 'NarratoAPI']
saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower()
saved_provider_index = 0
for i, provider in enumerate(vision_providers):
if provider.lower() == saved_vision_provider:
saved_provider_index = i
break
vision_provider = st.selectbox(
tr("Vision Model Provider"),
options=vision_providers,
index=saved_provider_index
)
vision_provider = vision_provider.lower()
config.app["vision_llm_provider"] = vision_provider
st.session_state['vision_llm_providers'] = vision_provider
# 获取已保存的视觉模型配置
vision_api_key = config.app.get(f"vision_{vision_provider}_api_key", "")
vision_base_url = config.app.get(f"vision_{vision_provider}_base_url", "")
vision_model_name = config.app.get(f"vision_{vision_provider}_model_name", "")
# 渲染视觉模型配置输入框
st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password")
st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url)
st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name)
# 在配置输入框后添加测试按钮
if st.button(tr("Test Connection"), key="test_vision_connection"):
with st.spinner(tr("Testing connection...")):
success, message = test_vision_model_connection(
api_key=st_vision_api_key,
base_url=st_vision_base_url,
model_name=st_vision_model_name,
provider=vision_provider,
tr=tr
)
if success:
st.success(tr(message))
else:
st.error(tr(message))
# 保存视觉模型配置
if st_vision_api_key:
config.app[f"vision_{vision_provider}_api_key"] = st_vision_api_key
st.session_state[f"vision_{vision_provider}_api_key"] = st_vision_api_key # 用于script_settings.py
if st_vision_base_url:
config.app[f"vision_{vision_provider}_base_url"] = st_vision_base_url
st.session_state[f"vision_{vision_provider}_base_url"] = st_vision_base_url
if st_vision_model_name:
config.app[f"vision_{vision_provider}_model_name"] = st_vision_model_name
st.session_state[f"vision_{vision_provider}_model_name"] = st_vision_model_name
# # NarratoAPI 特殊配置
# if vision_provider == 'narratoapi':
# st.subheader(tr("Narrato Additional Settings"))
#
# # Narrato API 基础配置
# narrato_api_key = st.text_input(
# tr("Narrato API Key"),
# value=config.app.get("narrato_api_key", ""),
# type="password",
# help="用于访问 Narrato API 的密钥"
# )
# if narrato_api_key:
# config.app["narrato_api_key"] = narrato_api_key
# st.session_state['narrato_api_key'] = narrato_api_key
#
# narrato_api_url = st.text_input(
# tr("Narrato API URL"),
# value=config.app.get("narrato_api_url", "http://127.0.0.1:8000/api/v1/video/analyze")
# )
# if narrato_api_url:
# config.app["narrato_api_url"] = narrato_api_url
# st.session_state['narrato_api_url'] = narrato_api_url
#
# # 视频分析模型配置
# st.markdown("##### " + tr("Vision Model Settings"))
# narrato_vision_model = st.text_input(
# tr("Vision Model Name"),
# value=config.app.get("narrato_vision_model", "gemini-1.5-flash")
# )
# narrato_vision_key = st.text_input(
# tr("Vision Model API Key"),
# value=config.app.get("narrato_vision_key", ""),
# type="password",
# help="用于视频分析的模型 API Key"
# )
#
# if narrato_vision_model:
# config.app["narrato_vision_model"] = narrato_vision_model
# st.session_state['narrato_vision_model'] = narrato_vision_model
# if narrato_vision_key:
# config.app["narrato_vision_key"] = narrato_vision_key
# st.session_state['narrato_vision_key'] = narrato_vision_key
#
# # 文案生成模型配置
# st.markdown("##### " + tr("Text Generation Model Settings"))
# narrato_llm_model = st.text_input(
# tr("LLM Model Name"),
# value=config.app.get("narrato_llm_model", "qwen-plus")
# )
# narrato_llm_key = st.text_input(
# tr("LLM Model API Key"),
# value=config.app.get("narrato_llm_key", ""),
# type="password",
# help="用于文案生成的模型 API Key"
# )
#
# if narrato_llm_model:
# config.app["narrato_llm_model"] = narrato_llm_model
# st.session_state['narrato_llm_model'] = narrato_llm_model
# if narrato_llm_key:
# config.app["narrato_llm_key"] = narrato_llm_key
# st.session_state['narrato_llm_key'] = narrato_llm_key
#
# # 批处理配置
# narrato_batch_size = st.number_input(
# tr("Batch Size"),
# min_value=1,
# max_value=50,
# value=config.app.get("narrato_batch_size", 10),
# help="每批处理的图片数量"
# )
# if narrato_batch_size:
# config.app["narrato_batch_size"] = narrato_batch_size
# st.session_state['narrato_batch_size'] = narrato_batch_size
def render_text_llm_settings(tr):
"""渲染文案生成模型设置"""
st.subheader(tr("Text Generation Model Settings"))
# 文案生成模型提供商选择
text_providers = ['OpenAI', 'Qwen', 'Moonshot', 'DeepSeek', 'Gemini']
saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower()
saved_provider_index = 0
for i, provider in enumerate(text_providers):
if provider.lower() == saved_text_provider:
saved_provider_index = i
break
text_provider = st.selectbox(
tr("Text Model Provider"),
options=text_providers,
index=saved_provider_index
)
text_provider = text_provider.lower()
config.app["text_llm_provider"] = text_provider
# 获取已保存的文本模型配置
text_api_key = config.app.get(f"text_{text_provider}_api_key", "")
text_base_url = config.app.get(f"text_{text_provider}_base_url", "")
text_model_name = config.app.get(f"text_{text_provider}_model_name", "")
# 渲染文本模型配置输入框
st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password")
st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url)
st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name)
# 保存文本模型配置
if st_text_api_key:
config.app[f"text_{text_provider}_api_key"] = st_text_api_key
if st_text_base_url:
config.app[f"text_{text_provider}_base_url"] = st_text_base_url
if st_text_model_name:
config.app[f"text_{text_provider}_model_name"] = st_text_model_name
# Cloudflare 特殊配置
if text_provider == 'cloudflare':
st_account_id = st.text_input(
tr("Account ID"),
value=config.app.get(f"text_{text_provider}_account_id", "")
)
if st_account_id:
config.app[f"text_{text_provider}_account_id"] = st_account_id