NarratoAI/app/services/subtitle.py
linyq 7b3014ad42 剪辑逻辑进度60%;
待优化点:
1. 生成字幕逻辑优化
2. 文案解说的时间和脚本时间的优化
2024-09-28 17:10:43 +08:00

341 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import os.path
import re
from typing import Optional
from faster_whisper import WhisperModel
from timeit import default_timer as timer
from loguru import logger
import google.generativeai as genai
from app.config import config
from app.utils import utils
model_size = config.whisper.get("model_size", "large-v3")
device = config.whisper.get("device", "cpu")
compute_type = config.whisper.get("compute_type", "int8")
model = None
def create(audio_file, subtitle_file: str = ""):
global model
if not model:
model_path = f"{utils.root_dir()}/models/whisper-{model_size}"
model_bin_file = f"{model_path}/model.bin"
if not os.path.isdir(model_path) or not os.path.isfile(model_bin_file):
model_path = model_size
logger.info(
f"loading model: {model_path}, device: {device}, compute_type: {compute_type}"
)
try:
model = WhisperModel(
model_size_or_path=model_path, device=device, compute_type=compute_type
)
except Exception as e:
logger.error(
f"failed to load model: {e} \n\n"
f"********************************************\n"
f"this may be caused by network issue. \n"
f"please download the model manually and put it in the 'models' folder. \n"
f"see [README.md FAQ](https://github.com/harry0703/NarratoAI) for more details.\n"
f"********************************************\n\n"
)
return None
logger.info(f"start, output file: {subtitle_file}")
if not subtitle_file:
subtitle_file = f"{audio_file}.srt"
segments, info = model.transcribe(
audio_file,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500),
)
logger.info(
f"detected language: '{info.language}', probability: {info.language_probability:.2f}"
)
start = timer()
subtitles = []
def recognized(seg_text, seg_start, seg_end):
seg_text = seg_text.strip()
if not seg_text:
return
msg = "[%.2fs -> %.2fs] %s" % (seg_start, seg_end, seg_text)
logger.debug(msg)
subtitles.append(
{"msg": seg_text, "start_time": seg_start, "end_time": seg_end}
)
for segment in segments:
words_idx = 0
words_len = len(segment.words)
seg_start = 0
seg_end = 0
seg_text = ""
if segment.words:
is_segmented = False
for word in segment.words:
if not is_segmented:
seg_start = word.start
is_segmented = True
seg_end = word.end
# 如果包含标点,则断句
seg_text += word.word
if utils.str_contains_punctuation(word.word):
# remove last char
seg_text = seg_text[:-1]
if not seg_text:
continue
recognized(seg_text, seg_start, seg_end)
is_segmented = False
seg_text = ""
if words_idx == 0 and segment.start < word.start:
seg_start = word.start
if words_idx == (words_len - 1) and segment.end > word.end:
seg_end = word.end
words_idx += 1
if not seg_text:
continue
recognized(seg_text, seg_start, seg_end)
end = timer()
diff = end - start
logger.info(f"complete, elapsed: {diff:.2f} s")
idx = 1
lines = []
for subtitle in subtitles:
text = subtitle.get("msg")
if text:
lines.append(
utils.text_to_srt(
idx, text, subtitle.get("start_time"), subtitle.get("end_time")
)
)
idx += 1
sub = "\n".join(lines) + "\n"
with open(subtitle_file, "w", encoding="utf-8") as f:
f.write(sub)
logger.info(f"subtitle file created: {subtitle_file}")
def file_to_subtitles(filename):
if not filename or not os.path.isfile(filename):
return []
times_texts = []
current_times = None
current_text = ""
index = 0
with open(filename, "r", encoding="utf-8") as f:
for line in f:
times = re.findall("([0-9]*:[0-9]*:[0-9]*,[0-9]*)", line)
if times:
current_times = line
elif line.strip() == "" and current_times:
index += 1
times_texts.append((index, current_times.strip(), current_text.strip()))
current_times, current_text = None, ""
elif current_times:
current_text += line
return times_texts
def levenshtein_distance(s1, s2):
if len(s1) < len(s2):
return levenshtein_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def similarity(a, b):
distance = levenshtein_distance(a.lower(), b.lower())
max_length = max(len(a), len(b))
return 1 - (distance / max_length)
def correct(subtitle_file, video_script):
subtitle_items = file_to_subtitles(subtitle_file)
script_lines = utils.split_string_by_punctuations(video_script)
corrected = False
new_subtitle_items = []
script_index = 0
subtitle_index = 0
while script_index < len(script_lines) and subtitle_index < len(subtitle_items):
script_line = script_lines[script_index].strip()
subtitle_line = subtitle_items[subtitle_index][2].strip()
if script_line == subtitle_line:
new_subtitle_items.append(subtitle_items[subtitle_index])
script_index += 1
subtitle_index += 1
else:
combined_subtitle = subtitle_line
start_time = subtitle_items[subtitle_index][1].split(" --> ")[0]
end_time = subtitle_items[subtitle_index][1].split(" --> ")[1]
next_subtitle_index = subtitle_index + 1
while next_subtitle_index < len(subtitle_items):
next_subtitle = subtitle_items[next_subtitle_index][2].strip()
if similarity(
script_line, combined_subtitle + " " + next_subtitle
) > similarity(script_line, combined_subtitle):
combined_subtitle += " " + next_subtitle
end_time = subtitle_items[next_subtitle_index][1].split(" --> ")[1]
next_subtitle_index += 1
else:
break
if similarity(script_line, combined_subtitle) > 0.8:
logger.warning(
f"Merged/Corrected - Script: {script_line}, Subtitle: {combined_subtitle}"
)
new_subtitle_items.append(
(
len(new_subtitle_items) + 1,
f"{start_time} --> {end_time}",
script_line,
)
)
corrected = True
else:
logger.warning(
f"Mismatch - Script: {script_line}, Subtitle: {combined_subtitle}"
)
new_subtitle_items.append(
(
len(new_subtitle_items) + 1,
f"{start_time} --> {end_time}",
script_line,
)
)
corrected = True
script_index += 1
subtitle_index = next_subtitle_index
# 处理剩余的脚本行
while script_index < len(script_lines):
logger.warning(f"Extra script line: {script_lines[script_index]}")
if subtitle_index < len(subtitle_items):
new_subtitle_items.append(
(
len(new_subtitle_items) + 1,
subtitle_items[subtitle_index][1],
script_lines[script_index],
)
)
subtitle_index += 1
else:
new_subtitle_items.append(
(
len(new_subtitle_items) + 1,
"00:00:00,000 --> 00:00:00,000",
script_lines[script_index],
)
)
script_index += 1
corrected = True
if corrected:
with open(subtitle_file, "w", encoding="utf-8") as fd:
for i, item in enumerate(new_subtitle_items):
fd.write(f"{i + 1}\n{item[1]}\n{item[2]}\n\n")
logger.info("Subtitle corrected")
else:
logger.success("Subtitle is correct")
def create_with_gemini(audio_file: str, subtitle_file: str = "", api_key: Optional[str] = None) -> Optional[str]:
if not api_key:
logger.error("Gemini API key is not provided")
return None
genai.configure(api_key=api_key)
logger.info(f"开始使用Gemini模型处理音频文件: {audio_file}")
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
prompt = "生成这段语音的转录文本。请以SRT格式输出包含时间戳。"
try:
with open(audio_file, "rb") as f:
audio_data = f.read()
response = model.generate_content([prompt, audio_data])
transcript = response.text
if not subtitle_file:
subtitle_file = f"{audio_file}.srt"
with open(subtitle_file, "w", encoding="utf-8") as f:
f.write(transcript)
logger.info(f"Gemini生成的字幕文件已保存: {subtitle_file}")
return subtitle_file
except Exception as e:
logger.error(f"使用Gemini处理音频时出错: {e}")
return None
if __name__ == "__main__":
task_id = "task456"
task_dir = utils.task_dir(task_id)
subtitle_file = f"{task_dir}/subtitle.srt"
audio_file = f"{task_dir}/audio.mp3"
subtitles = file_to_subtitles(subtitle_file)
print(subtitles)
script_file = f"{task_dir}/script.json"
with open(script_file, "r") as f:
script_content = f.read()
s = json.loads(script_content)
script = s.get("script")
correct(subtitle_file, script)
subtitle_file = f"{task_dir}/subtitle-test.srt"
create(audio_file, subtitle_file)
# 使用Gemini模型处理音频
gemini_api_key = config.app.get("gemini_api_key") # 请替换为实际的API密钥
gemini_subtitle_file = create_with_gemini(audio_file, api_key=gemini_api_key)
if gemini_subtitle_file:
print(f"Gemini生成的字幕文件: {gemini_subtitle_file}")