NarratoAI/webui/components/basic_settings.py

829 lines
30 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import traceback
import streamlit as st
import os
from app.config import config
from app.utils import utils
from loguru import logger
def validate_api_key(api_key: str, provider: str) -> tuple[bool, str]:
"""验证API密钥格式"""
if not api_key or not api_key.strip():
return False, f"{provider} API密钥不能为空"
# 基本长度检查
if len(api_key.strip()) < 10:
return False, f"{provider} API密钥长度过短请检查是否正确"
return True, ""
def validate_base_url(base_url: str, provider: str) -> tuple[bool, str]:
"""验证Base URL格式"""
if not base_url or not base_url.strip():
return True, "" # base_url可以为空
base_url = base_url.strip()
if not (base_url.startswith('http://') or base_url.startswith('https://')):
return False, f"{provider} Base URL必须以http://或https://开头"
return True, ""
def validate_model_name(model_name: str, provider: str) -> tuple[bool, str]:
"""验证模型名称"""
if not model_name or not model_name.strip():
return False, f"{provider} 模型名称不能为空"
return True, ""
def validate_litellm_model_name(model_name: str, model_type: str) -> tuple[bool, str]:
"""验证 LiteLLM 模型名称格式
Args:
model_name: 模型名称,应为 provider/model 格式
model_type: 模型类型(如"视频分析""文案生成"
Returns:
(是否有效, 错误消息)
"""
if not model_name or not model_name.strip():
return False, f"{model_type} 模型名称不能为空"
model_name = model_name.strip()
# LiteLLM 推荐格式provider/model如 gemini/gemini-2.0-flash-lite
# 但也支持直接的模型名称(如 gpt-4oLiteLLM 会自动推断 provider
# 检查是否包含 provider 前缀(推荐格式)
if "/" in model_name:
parts = model_name.split("/")
if len(parts) < 2 or not parts[0] or not parts[1]:
return False, f"{model_type} 模型名称格式错误。推荐格式: provider/model (如 gemini/gemini-2.0-flash-lite"
# 验证 provider 名称(只允许字母、数字、下划线、连字符)
provider = parts[0]
if not provider.replace("-", "").replace("_", "").isalnum():
return False, f"{model_type} Provider 名称只能包含字母、数字、下划线和连字符"
else:
# 直接模型名称也是有效的LiteLLM 会自动推断)
# 但给出警告建议使用完整格式
logger.debug(f"{model_type} 模型名称未包含 provider 前缀LiteLLM 将自动推断")
# 基本长度检查
if len(model_name) < 3:
return False, f"{model_type} 模型名称过短"
if len(model_name) > 200:
return False, f"{model_type} 模型名称过长"
return True, ""
def show_config_validation_errors(errors: list):
"""显示配置验证错误"""
if errors:
for error in errors:
st.error(error)
def render_basic_settings(tr):
"""渲染基础设置面板"""
with st.expander(tr("Basic Settings"), expanded=False):
config_panels = st.columns(3)
left_config_panel = config_panels[0]
middle_config_panel = config_panels[1]
right_config_panel = config_panels[2]
with left_config_panel:
render_language_settings(tr)
render_proxy_settings(tr)
with middle_config_panel:
render_vision_llm_settings(tr) # 视频分析模型设置
with right_config_panel:
render_text_llm_settings(tr) # 文案生成模型设置
def render_language_settings(tr):
st.subheader(tr("Proxy Settings"))
"""渲染语言设置"""
system_locale = utils.get_system_locale()
i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n")
locales = utils.load_locales(i18n_dir)
display_languages = []
selected_index = 0
for i, code in enumerate(locales.keys()):
display_languages.append(f"{code} - {locales[code].get('Language')}")
if code == st.session_state.get('ui_language', system_locale):
selected_index = i
selected_language = st.selectbox(
tr("Language"),
options=display_languages,
index=selected_index
)
if selected_language:
code = selected_language.split(" - ")[0].strip()
st.session_state['ui_language'] = code
config.ui['language'] = code
def render_proxy_settings(tr):
"""渲染代理设置"""
# 获取当前代理状态
proxy_enabled = config.proxy.get("enabled", False)
proxy_url_http = config.proxy.get("http")
proxy_url_https = config.proxy.get("https")
# 添加代理开关
proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled)
# 保存代理开关状态
# config.proxy["enabled"] = proxy_enabled
# 只有在代理启用时才显示代理设置输入框
if proxy_enabled:
HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http)
HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https)
if HTTP_PROXY and HTTPS_PROXY:
config.proxy["http"] = HTTP_PROXY
config.proxy["https"] = HTTPS_PROXY
os.environ["HTTP_PROXY"] = HTTP_PROXY
os.environ["HTTPS_PROXY"] = HTTPS_PROXY
# logger.debug(f"代理已启用: {HTTP_PROXY}")
else:
# 当代理被禁用时,清除环境变量和配置
os.environ.pop("HTTP_PROXY", None)
os.environ.pop("HTTPS_PROXY", None)
# config.proxy["http"] = ""
# config.proxy["https"] = ""
def test_vision_model_connection(api_key, base_url, model_name, provider, tr):
"""测试视觉模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
import requests
logger.debug(f"大模型连通性测试: {base_url} 模型: {model_name} apikey: {api_key}")
if provider.lower() == 'gemini':
# 原生Gemini API测试
try:
# 构建请求数据
request_data = {
"contents": [{
"parts": [{"text": "直接回复我文本'当前网络可用'"}]
}]
}
# 构建请求URL
api_base_url = base_url
url = f"{api_base_url}/models/{model_name}:generateContent"
# 发送请求
response = requests.post(
url,
json=request_data,
headers={
"x-goog-api-key": api_key,
"Content-Type": "application/json"
},
timeout=10
)
if response.status_code == 200:
return True, tr("原生Gemini模型连接成功")
else:
return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}"
elif provider.lower() == 'gemini(openai)':
# OpenAI兼容的Gemini代理测试
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
test_url = f"{base_url.rstrip('/')}/chat/completions"
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
response = requests.post(test_url, headers=headers, json=test_data, timeout=10)
if response.status_code == 200:
return True, tr("OpenAI兼容Gemini代理连接成功")
else:
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: {str(e)}"
else:
from openai import OpenAI
try:
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
response = client.chat.completions.create(
model=model_name,
messages=[
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}],
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg"
},
},
{"type": "text", "text": "回复我网络可用即可"},
],
},
],
)
if response and response.choices:
return True, tr("QwenVL model is available")
else:
return False, tr("QwenVL model returned invalid response")
except Exception as e:
# logger.debug(api_key)
# logger.debug(base_url)
# logger.debug(model_name)
return False, f"{tr('QwenVL model is not available')}: {str(e)}"
def test_litellm_vision_model(api_key: str, base_url: str, model_name: str, tr) -> tuple[bool, str]:
"""测试 LiteLLM 视觉模型连接
Args:
api_key: API 密钥
base_url: 基础 URL可选
model_name: 模型名称LiteLLM 格式provider/model
tr: 翻译函数
Returns:
(连接是否成功, 测试结果消息)
"""
try:
import litellm
import os
import base64
import io
from PIL import Image
logger.debug(f"LiteLLM 视觉模型连通性测试: model={model_name}, api_key={api_key[:10]}..., base_url={base_url}")
# 提取 provider 名称
provider = model_name.split("/")[0] if "/" in model_name else "unknown"
# 设置 API key 到环境变量
env_key_mapping = {
"gemini": "GEMINI_API_KEY",
"google": "GEMINI_API_KEY",
"openai": "OPENAI_API_KEY",
"qwen": "QWEN_API_KEY",
"dashscope": "DASHSCOPE_API_KEY",
"siliconflow": "SILICONFLOW_API_KEY",
}
env_var = env_key_mapping.get(provider.lower(), f"{provider.upper()}_API_KEY")
old_key = os.environ.get(env_var)
os.environ[env_var] = api_key
try:
# 创建测试图片1x1 白色像素)
test_image = Image.new('RGB', (1, 1), color='white')
img_buffer = io.BytesIO()
test_image.save(img_buffer, format='JPEG')
img_bytes = img_buffer.getvalue()
base64_image = base64.b64encode(img_bytes).decode('utf-8')
# 构建测试请求
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "请直接回复'连接成功'"},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}]
# 准备参数
completion_kwargs = {
"model": model_name,
"messages": messages,
"temperature": 0.1,
"max_tokens": 50
}
if base_url:
completion_kwargs["api_base"] = base_url
# 调用 LiteLLM同步调用用于测试
response = litellm.completion(**completion_kwargs)
if response and response.choices and len(response.choices) > 0:
return True, f"LiteLLM 视觉模型连接成功 ({model_name})"
else:
return False, f"LiteLLM 视觉模型返回空响应"
finally:
# 恢复原始环境变量
if old_key:
os.environ[env_var] = old_key
else:
os.environ.pop(env_var, None)
except Exception as e:
error_msg = str(e)
logger.error(f"LiteLLM 视觉模型测试失败: {error_msg}")
# 提供更友好的错误信息
if "authentication" in error_msg.lower() or "api_key" in error_msg.lower():
return False, f"认证失败,请检查 API Key 是否正确"
elif "not found" in error_msg.lower() or "404" in error_msg:
return False, f"模型不存在,请检查模型名称是否正确"
elif "rate limit" in error_msg.lower():
return False, f"超出速率限制,请稍后重试"
else:
return False, f"连接失败: {error_msg}"
def test_litellm_text_model(api_key: str, base_url: str, model_name: str, tr) -> tuple[bool, str]:
"""测试 LiteLLM 文本模型连接
Args:
api_key: API 密钥
base_url: 基础 URL可选
model_name: 模型名称LiteLLM 格式provider/model
tr: 翻译函数
Returns:
(连接是否成功, 测试结果消息)
"""
try:
import litellm
import os
logger.debug(f"LiteLLM 文本模型连通性测试: model={model_name}, api_key={api_key[:10]}..., base_url={base_url}")
# 提取 provider 名称
provider = model_name.split("/")[0] if "/" in model_name else "unknown"
# 设置 API key 到环境变量
env_key_mapping = {
"gemini": "GEMINI_API_KEY",
"google": "GEMINI_API_KEY",
"openai": "OPENAI_API_KEY",
"qwen": "QWEN_API_KEY",
"dashscope": "DASHSCOPE_API_KEY",
"siliconflow": "SILICONFLOW_API_KEY",
"deepseek": "DEEPSEEK_API_KEY",
"moonshot": "MOONSHOT_API_KEY",
}
env_var = env_key_mapping.get(provider.lower(), f"{provider.upper()}_API_KEY")
old_key = os.environ.get(env_var)
os.environ[env_var] = api_key
try:
# 构建测试请求
messages = [
{"role": "user", "content": "请直接回复'连接成功'"}
]
# 准备参数
completion_kwargs = {
"model": model_name,
"messages": messages,
"temperature": 0.1,
"max_tokens": 20
}
if base_url:
completion_kwargs["api_base"] = base_url
# 调用 LiteLLM同步调用用于测试
response = litellm.completion(**completion_kwargs)
if response and response.choices and len(response.choices) > 0:
return True, f"LiteLLM 文本模型连接成功 ({model_name})"
else:
return False, f"LiteLLM 文本模型返回空响应"
finally:
# 恢复原始环境变量
if old_key:
os.environ[env_var] = old_key
else:
os.environ.pop(env_var, None)
except Exception as e:
error_msg = str(e)
logger.error(f"LiteLLM 文本模型测试失败: {error_msg}")
# 提供更友好的错误信息
if "authentication" in error_msg.lower() or "api_key" in error_msg.lower():
return False, f"认证失败,请检查 API Key 是否正确"
elif "not found" in error_msg.lower() or "404" in error_msg:
return False, f"模型不存在,请检查模型名称是否正确"
elif "rate limit" in error_msg.lower():
return False, f"超出速率限制,请稍后重试"
else:
return False, f"连接失败: {error_msg}"
def render_vision_llm_settings(tr):
"""渲染视频分析模型设置LiteLLM 统一配置)"""
st.subheader(tr("Vision Model Settings"))
# 固定使用 LiteLLM 提供商
config.app["vision_llm_provider"] = "litellm"
# 获取已保存的 LiteLLM 配置
vision_model_name = config.app.get("vision_litellm_model_name", "gemini/gemini-2.0-flash-lite")
vision_api_key = config.app.get("vision_litellm_api_key", "")
vision_base_url = config.app.get("vision_litellm_base_url", "")
# 渲染配置输入框
st_vision_model_name = st.text_input(
tr("Vision Model Name"),
value=vision_model_name,
help="LiteLLM 模型格式: provider/model\n\n"
"常用示例:\n"
"• gemini/gemini-2.0-flash-lite (推荐,速度快)\n"
"• gemini/gemini-1.5-pro (高精度)\n"
"• openai/gpt-4o, openai/gpt-4o-mini\n"
"• qwen/qwen2.5-vl-32b-instruct\n"
"• siliconflow/Qwen/Qwen2.5-VL-32B-Instruct\n\n"
"支持 100+ providers详见: https://docs.litellm.ai/docs/providers"
)
st_vision_api_key = st.text_input(
tr("Vision API Key"),
value=vision_api_key,
type="password",
help="对应 provider 的 API 密钥\n\n"
"获取地址:\n"
"• Gemini: https://makersuite.google.com/app/apikey\n"
"• OpenAI: https://platform.openai.com/api-keys\n"
"• Qwen: https://bailian.console.aliyun.com/\n"
"• SiliconFlow: https://cloud.siliconflow.cn/account/ak"
)
st_vision_base_url = st.text_input(
tr("Vision Base URL"),
value=vision_base_url,
help="自定义 API 端点(可选)\n\n"
"留空使用默认端点。可用于:\n"
"• 代理地址(如通过 CloudFlare\n"
"• 私有部署的模型服务\n"
"• 自定义网关\n\n"
"示例: https://your-proxy.com/v1"
)
# 添加测试连接按钮
if st.button(tr("Test Connection"), key="test_vision_connection"):
test_errors = []
if not st_vision_api_key:
test_errors.append("请先输入 API 密钥")
if not st_vision_model_name:
test_errors.append("请先输入模型名称")
if test_errors:
for error in test_errors:
st.error(error)
else:
with st.spinner(tr("Testing connection...")):
try:
success, message = test_litellm_vision_model(
api_key=st_vision_api_key,
base_url=st_vision_base_url,
model_name=st_vision_model_name,
tr=tr
)
if success:
st.success(message)
else:
st.error(message)
except Exception as e:
st.error(f"测试连接时发生错误: {str(e)}")
logger.error(f"LiteLLM 视频分析模型连接测试失败: {str(e)}")
# 验证和保存配置
validation_errors = []
config_changed = False
# 验证模型名称
if st_vision_model_name:
is_valid, error_msg = validate_litellm_model_name(st_vision_model_name, "视频分析")
if is_valid:
config.app["vision_litellm_model_name"] = st_vision_model_name
st.session_state["vision_litellm_model_name"] = st_vision_model_name
config_changed = True
else:
validation_errors.append(error_msg)
# 验证 API 密钥
if st_vision_api_key:
is_valid, error_msg = validate_api_key(st_vision_api_key, "视频分析")
if is_valid:
config.app["vision_litellm_api_key"] = st_vision_api_key
st.session_state["vision_litellm_api_key"] = st_vision_api_key
config_changed = True
else:
validation_errors.append(error_msg)
# 验证 Base URL可选
if st_vision_base_url:
is_valid, error_msg = validate_base_url(st_vision_base_url, "视频分析")
if is_valid:
config.app["vision_litellm_base_url"] = st_vision_base_url
st.session_state["vision_litellm_base_url"] = st_vision_base_url
config_changed = True
else:
validation_errors.append(error_msg)
# 显示验证错误
show_config_validation_errors(validation_errors)
# 保存配置
if config_changed and not validation_errors:
try:
config.save_config()
if st_vision_api_key or st_vision_base_url or st_vision_model_name:
st.success(f"视频分析模型配置已保存LiteLLM")
except Exception as e:
st.error(f"保存配置失败: {str(e)}")
logger.error(f"保存视频分析配置失败: {str(e)}")
def test_text_model_connection(api_key, base_url, model_name, provider, tr):
"""测试文本模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
import requests
logger.debug(f"大模型连通性测试: {base_url} 模型: {model_name} apikey: {api_key}")
try:
# 构建统一的测试请求遵循OpenAI格式
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# 特殊处理Gemini
if provider.lower() == 'gemini':
# 原生Gemini API测试
try:
# 构建请求数据
request_data = {
"contents": [{
"parts": [{"text": "直接回复我文本'当前网络可用'"}]
}]
}
# 构建请求URL
api_base_url = base_url
url = f"{api_base_url}/models/{model_name}:generateContent"
# 发送请求
response = requests.post(
url,
json=request_data,
headers={
"x-goog-api-key": api_key,
"Content-Type": "application/json"
},
timeout=10
)
if response.status_code == 200:
return True, tr("原生Gemini模型连接成功")
else:
return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}"
elif provider.lower() == 'gemini(openai)':
# OpenAI兼容的Gemini代理测试
test_url = f"{base_url.rstrip('/')}/chat/completions"
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
response = requests.post(test_url, headers=headers, json=test_data, timeout=10)
if response.status_code == 200:
return True, tr("OpenAI兼容Gemini代理连接成功")
else:
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}"
else:
test_url = f"{base_url.rstrip('/')}/chat/completions"
# 构建测试消息
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
# 发送测试请求
response = requests.post(
test_url,
headers=headers,
json=test_data,
)
# logger.debug(model_name)
# logger.debug(api_key)
# logger.debug(test_url)
if response.status_code == 200:
return True, tr("Text model is available")
else:
return False, f"{tr('Text model is not available')}: HTTP {response.status_code}"
except Exception as e:
logger.error(traceback.format_exc())
return False, f"{tr('Connection failed')}: {str(e)}"
def render_text_llm_settings(tr):
"""渲染文案生成模型设置LiteLLM 统一配置)"""
st.subheader(tr("Text Generation Model Settings"))
# 固定使用 LiteLLM 提供商
config.app["text_llm_provider"] = "litellm"
# 获取已保存的 LiteLLM 配置
text_model_name = config.app.get("text_litellm_model_name", "deepseek/deepseek-chat")
text_api_key = config.app.get("text_litellm_api_key", "")
text_base_url = config.app.get("text_litellm_base_url", "")
# 渲染配置输入框
st_text_model_name = st.text_input(
tr("Text Model Name"),
value=text_model_name,
help="LiteLLM 模型格式: provider/model\n\n"
"常用示例:\n"
"• deepseek/deepseek-chat (推荐,性价比高)\n"
"• gemini/gemini-2.0-flash (速度快)\n"
"• openai/gpt-4o, openai/gpt-4o-mini\n"
"• qwen/qwen-plus, qwen/qwen-turbo\n"
"• siliconflow/deepseek-ai/DeepSeek-R1\n"
"• moonshot/moonshot-v1-8k\n\n"
"支持 100+ providers详见: https://docs.litellm.ai/docs/providers"
)
st_text_api_key = st.text_input(
tr("Text API Key"),
value=text_api_key,
type="password",
help="对应 provider 的 API 密钥\n\n"
"获取地址:\n"
"• DeepSeek: https://platform.deepseek.com/api_keys\n"
"• Gemini: https://makersuite.google.com/app/apikey\n"
"• OpenAI: https://platform.openai.com/api-keys\n"
"• Qwen: https://bailian.console.aliyun.com/\n"
"• SiliconFlow: https://cloud.siliconflow.cn/account/ak\n"
"• Moonshot: https://platform.moonshot.cn/console/api-keys"
)
st_text_base_url = st.text_input(
tr("Text Base URL"),
value=text_base_url,
help="自定义 API 端点(可选)\n\n"
"留空使用默认端点。可用于:\n"
"• 代理地址(如通过 CloudFlare\n"
"• 私有部署的模型服务\n"
"• 自定义网关\n\n"
"示例: https://your-proxy.com/v1"
)
# 添加测试连接按钮
if st.button(tr("Test Connection"), key="test_text_connection"):
test_errors = []
if not st_text_api_key:
test_errors.append("请先输入 API 密钥")
if not st_text_model_name:
test_errors.append("请先输入模型名称")
if test_errors:
for error in test_errors:
st.error(error)
else:
with st.spinner(tr("Testing connection...")):
try:
success, message = test_litellm_text_model(
api_key=st_text_api_key,
base_url=st_text_base_url,
model_name=st_text_model_name,
tr=tr
)
if success:
st.success(message)
else:
st.error(message)
except Exception as e:
st.error(f"测试连接时发生错误: {str(e)}")
logger.error(f"LiteLLM 文案生成模型连接测试失败: {str(e)}")
# 验证和保存配置
text_validation_errors = []
text_config_changed = False
# 验证模型名称
if st_text_model_name:
is_valid, error_msg = validate_litellm_model_name(st_text_model_name, "文案生成")
if is_valid:
config.app["text_litellm_model_name"] = st_text_model_name
st.session_state["text_litellm_model_name"] = st_text_model_name
text_config_changed = True
else:
text_validation_errors.append(error_msg)
# 验证 API 密钥
if st_text_api_key:
is_valid, error_msg = validate_api_key(st_text_api_key, "文案生成")
if is_valid:
config.app["text_litellm_api_key"] = st_text_api_key
st.session_state["text_litellm_api_key"] = st_text_api_key
text_config_changed = True
else:
text_validation_errors.append(error_msg)
# 验证 Base URL可选
if st_text_base_url:
is_valid, error_msg = validate_base_url(st_text_base_url, "文案生成")
if is_valid:
config.app["text_litellm_base_url"] = st_text_base_url
st.session_state["text_litellm_base_url"] = st_text_base_url
text_config_changed = True
else:
text_validation_errors.append(error_msg)
# 显示验证错误
show_config_validation_errors(text_validation_errors)
# 保存配置
if text_config_changed and not text_validation_errors:
try:
config.save_config()
if st_text_api_key or st_text_base_url or st_text_model_name:
st.success(f"文案生成模型配置已保存LiteLLM")
except Exception as e:
st.error(f"保存配置失败: {str(e)}")
logger.error(f"保存文案生成配置失败: {str(e)}")
# # Cloudflare 特殊配置
# if text_provider == 'cloudflare':
# st_account_id = st.text_input(
# tr("Account ID"),
# value=config.app.get(f"text_{text_provider}_account_id", "")
# )
# if st_account_id:
# config.app[f"text_{text_provider}_account_id"] = st_account_id