mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-10 18:02:51 +00:00
190 lines
6.1 KiB
Python
190 lines
6.1 KiB
Python
"""
|
||
大模型服务提供商基类定义
|
||
|
||
定义了统一的大模型服务接口,包括视觉模型和文本生成模型的抽象基类
|
||
"""
|
||
|
||
from abc import ABC, abstractmethod
|
||
from typing import List, Dict, Any, Optional, Union
|
||
from pathlib import Path
|
||
import PIL.Image
|
||
from loguru import logger
|
||
|
||
from .exceptions import LLMServiceError, ConfigurationError
|
||
|
||
|
||
class BaseLLMProvider(ABC):
|
||
"""大模型服务提供商基类"""
|
||
|
||
def __init__(self,
|
||
api_key: str,
|
||
model_name: str,
|
||
base_url: Optional[str] = None,
|
||
**kwargs):
|
||
"""
|
||
初始化大模型服务提供商
|
||
|
||
Args:
|
||
api_key: API密钥
|
||
model_name: 模型名称
|
||
base_url: API基础URL
|
||
**kwargs: 其他配置参数
|
||
"""
|
||
self.api_key = api_key
|
||
self.model_name = model_name
|
||
self.base_url = base_url
|
||
self.config = kwargs
|
||
|
||
# 验证必要配置
|
||
self._validate_config()
|
||
|
||
# 初始化提供商特定设置
|
||
self._initialize()
|
||
|
||
@property
|
||
@abstractmethod
|
||
def provider_name(self) -> str:
|
||
"""供应商名称"""
|
||
pass
|
||
|
||
@property
|
||
@abstractmethod
|
||
def supported_models(self) -> List[str]:
|
||
"""支持的模型列表"""
|
||
pass
|
||
|
||
def _validate_config(self):
|
||
"""验证配置参数"""
|
||
if not self.api_key:
|
||
raise ConfigurationError("API密钥不能为空", "api_key")
|
||
|
||
if not self.model_name:
|
||
raise ConfigurationError("模型名称不能为空", "model_name")
|
||
|
||
# 检查模型支持情况
|
||
self._validate_model_support()
|
||
|
||
def _validate_model_support(self):
|
||
"""验证模型支持情况(宽松模式,仅记录警告)"""
|
||
from loguru import logger
|
||
|
||
# LiteLLM 已提供统一的模型验证,传统 provider 使用宽松验证
|
||
if self.model_name not in self.supported_models:
|
||
logger.warning(
|
||
f"模型 {self.model_name} 未在供应商 {self.provider_name} 的预定义支持列表中。"
|
||
f"支持的模型列表: {self.supported_models}"
|
||
)
|
||
|
||
def _initialize(self):
|
||
"""初始化提供商特定设置,子类可重写"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
async def _make_api_call(self, payload: Dict[str, Any]) -> Dict[str, Any]:
|
||
"""执行API调用,子类必须实现"""
|
||
pass
|
||
|
||
def _handle_api_error(self, status_code: int, response_text: str) -> LLMServiceError:
|
||
"""处理API错误,返回适当的异常"""
|
||
from .exceptions import APICallError, RateLimitError, AuthenticationError
|
||
|
||
if status_code == 401:
|
||
return AuthenticationError()
|
||
elif status_code == 429:
|
||
return RateLimitError()
|
||
elif status_code in [502, 503, 504]:
|
||
return APICallError(f"服务器错误 HTTP {status_code}", status_code, response_text)
|
||
elif status_code == 524:
|
||
return APICallError(f"服务器处理超时 HTTP {status_code}", status_code, response_text)
|
||
else:
|
||
return APICallError(f"HTTP {status_code}", status_code, response_text)
|
||
|
||
|
||
class VisionModelProvider(BaseLLMProvider):
|
||
"""视觉模型提供商基类"""
|
||
|
||
@abstractmethod
|
||
async def analyze_images(self,
|
||
images: List[Union[str, Path, PIL.Image.Image]],
|
||
prompt: str,
|
||
batch_size: int = 10,
|
||
**kwargs) -> List[str]:
|
||
"""
|
||
分析图片并返回结果
|
||
|
||
Args:
|
||
images: 图片路径列表或PIL图片对象列表
|
||
prompt: 分析提示词
|
||
batch_size: 批处理大小
|
||
**kwargs: 其他参数
|
||
|
||
Returns:
|
||
分析结果列表
|
||
"""
|
||
pass
|
||
|
||
def _prepare_images(self, images: List[Union[str, Path, PIL.Image.Image]]) -> List[PIL.Image.Image]:
|
||
"""预处理图片,统一转换为PIL.Image对象"""
|
||
processed_images = []
|
||
|
||
for img in images:
|
||
try:
|
||
if isinstance(img, (str, Path)):
|
||
pil_img = PIL.Image.open(img)
|
||
elif isinstance(img, PIL.Image.Image):
|
||
pil_img = img
|
||
else:
|
||
logger.warning(f"不支持的图片类型: {type(img)}")
|
||
continue
|
||
|
||
# 调整图片大小以优化性能
|
||
if pil_img.size[0] > 1024 or pil_img.size[1] > 1024:
|
||
pil_img.thumbnail((1024, 1024), PIL.Image.Resampling.LANCZOS)
|
||
|
||
processed_images.append(pil_img)
|
||
|
||
except Exception as e:
|
||
logger.error(f"加载图片失败 {img}: {str(e)}")
|
||
continue
|
||
|
||
return processed_images
|
||
|
||
|
||
class TextModelProvider(BaseLLMProvider):
|
||
"""文本生成模型提供商基类"""
|
||
|
||
@abstractmethod
|
||
async def generate_text(self,
|
||
prompt: str,
|
||
system_prompt: Optional[str] = None,
|
||
temperature: float = 1.0,
|
||
max_tokens: Optional[int] = None,
|
||
response_format: Optional[str] = None,
|
||
**kwargs) -> str:
|
||
"""
|
||
生成文本内容
|
||
|
||
Args:
|
||
prompt: 用户提示词
|
||
system_prompt: 系统提示词
|
||
temperature: 生成温度
|
||
max_tokens: 最大token数
|
||
response_format: 响应格式 ('json' 或 None)
|
||
**kwargs: 其他参数
|
||
|
||
Returns:
|
||
生成的文本内容
|
||
"""
|
||
pass
|
||
|
||
def _build_messages(self, prompt: str, system_prompt: Optional[str] = None) -> List[Dict[str, str]]:
|
||
"""构建消息列表"""
|
||
messages = []
|
||
|
||
if system_prompt:
|
||
messages.append({"role": "system", "content": system_prompt})
|
||
|
||
messages.append({"role": "user", "content": prompt})
|
||
|
||
return messages
|