mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-12 19:52:48 +00:00
- 在 generate_short_summary.py 中添加 temperature 参数,用于控制生成文案的随机性- 修改 prompt.py 中的段落数要求,改为与字幕长度成正比 - 在 short_drama_explanation.py 中添加日志输出,记录使用的模型和温度
457 lines
16 KiB
Python
457 lines
16 KiB
Python
#!/usr/bin/env python
|
||
# -*- coding: UTF-8 -*-
|
||
|
||
'''
|
||
@Project: NarratoAI
|
||
@File : 短剧解说
|
||
@Author : 小林同学
|
||
@Date : 2025/5/9 上午12:36
|
||
'''
|
||
|
||
import os
|
||
import json
|
||
import requests
|
||
from typing import Dict, Any, Optional
|
||
from loguru import logger
|
||
from app.config import config
|
||
from app.utils.utils import get_uuid, storage_dir
|
||
from app.services.SDE.prompt import subtitle_plot_analysis_v1, plot_writing
|
||
|
||
|
||
class SubtitleAnalyzer:
|
||
"""字幕剧情分析器,负责分析字幕内容并提取关键剧情段落"""
|
||
|
||
def __init__(
|
||
self,
|
||
api_key: Optional[str] = None,
|
||
model: Optional[str] = None,
|
||
base_url: Optional[str] = None,
|
||
custom_prompt: Optional[str] = None,
|
||
temperature: Optional[float] = 1.0,
|
||
):
|
||
"""
|
||
初始化字幕分析器
|
||
|
||
Args:
|
||
api_key: API密钥,如果不提供则从配置中读取
|
||
model: 模型名称,如果不提供则从配置中读取
|
||
base_url: API基础URL,如果不提供则从配置中读取或使用默认值
|
||
custom_prompt: 自定义提示词,如果不提供则使用默认值
|
||
temperature: 模型温度
|
||
"""
|
||
# 使用传入的参数或从配置中获取
|
||
self.api_key = api_key
|
||
self.model = model
|
||
self.base_url = base_url
|
||
self.temperature = temperature
|
||
|
||
# 设置提示词模板
|
||
self.prompt_template = custom_prompt or subtitle_plot_analysis_v1
|
||
|
||
# 初始化HTTP请求所需的头信息
|
||
self._init_headers()
|
||
|
||
def _init_headers(self):
|
||
"""初始化HTTP请求头"""
|
||
try:
|
||
# 基础请求头,包含API密钥和内容类型
|
||
self.headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {self.api_key}"
|
||
}
|
||
# logger.debug(f"初始化成功 - API Key: {self.api_key[:8]}... - Base URL: {self.base_url}")
|
||
except Exception as e:
|
||
logger.error(f"初始化请求头失败: {str(e)}")
|
||
raise
|
||
|
||
def analyze_subtitle(self, subtitle_content: str) -> Dict[str, Any]:
|
||
"""
|
||
分析字幕内容
|
||
|
||
Args:
|
||
subtitle_content: 字幕内容文本
|
||
|
||
Returns:
|
||
Dict[str, Any]: 包含分析结果的字典
|
||
"""
|
||
try:
|
||
# 构建完整提示词
|
||
prompt = f"{self.prompt_template}\n\n{subtitle_content}"
|
||
|
||
# 构建请求体数据
|
||
payload = {
|
||
"model": self.model,
|
||
"messages": [
|
||
{"role": "system", "content": "你是一位专业的剧本分析师和剧情概括助手。"},
|
||
{"role": "user", "content": prompt}
|
||
],
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
# 构建请求地址
|
||
url = f"{self.base_url}/chat/completions"
|
||
|
||
# 发送HTTP请求
|
||
response = requests.post(url, headers=self.headers, json=payload)
|
||
|
||
# 解析响应
|
||
if response.status_code == 200:
|
||
response_data = response.json()
|
||
|
||
# 提取响应内容
|
||
if "choices" in response_data and len(response_data["choices"]) > 0:
|
||
analysis_result = response_data["choices"][0]["message"]["content"]
|
||
logger.debug(f"字幕分析完成,消耗的tokens: {response_data.get('usage', {}).get('total_tokens', 0)}")
|
||
|
||
# 返回结果
|
||
return {
|
||
"status": "success",
|
||
"analysis": analysis_result,
|
||
"tokens_used": response_data.get("usage", {}).get("total_tokens", 0),
|
||
"model": self.model,
|
||
"temperature": self.temperature
|
||
}
|
||
else:
|
||
logger.error("字幕分析失败: 未获取到有效响应")
|
||
return {
|
||
"status": "error",
|
||
"message": "未获取到有效响应",
|
||
"temperature": self.temperature
|
||
}
|
||
else:
|
||
error_msg = f"请求失败,状态码: {response.status_code}, 响应: {response.text}"
|
||
logger.error(error_msg)
|
||
return {
|
||
"status": "error",
|
||
"message": error_msg,
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
except Exception as e:
|
||
logger.error(f"字幕分析过程中发生错误: {str(e)}")
|
||
return {
|
||
"status": "error",
|
||
"message": str(e),
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
def analyze_subtitle_from_file(self, subtitle_file_path: str) -> Dict[str, Any]:
|
||
"""
|
||
从文件读取字幕并分析
|
||
|
||
Args:
|
||
subtitle_file_path: 字幕文件的路径
|
||
|
||
Returns:
|
||
Dict[str, Any]: 包含分析结果的字典
|
||
"""
|
||
try:
|
||
# 检查文件是否存在
|
||
if not os.path.exists(subtitle_file_path):
|
||
return {
|
||
"status": "error",
|
||
"message": f"字幕文件不存在: {subtitle_file_path}",
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
# 读取文件内容
|
||
with open(subtitle_file_path, 'r', encoding='utf-8') as f:
|
||
subtitle_content = f.read()
|
||
|
||
# 分析字幕
|
||
return self.analyze_subtitle(subtitle_content)
|
||
|
||
except Exception as e:
|
||
logger.error(f"从文件读取字幕并分析过程中发生错误: {str(e)}")
|
||
return {
|
||
"status": "error",
|
||
"message": str(e),
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
def save_analysis_result(self, analysis_result: Dict[str, Any], output_path: Optional[str] = None) -> str:
|
||
"""
|
||
保存分析结果到文件
|
||
|
||
Args:
|
||
analysis_result: 分析结果
|
||
output_path: 输出文件路径,如果不提供则自动生成
|
||
|
||
Returns:
|
||
str: 输出文件的路径
|
||
"""
|
||
try:
|
||
# 如果未提供输出路径,则自动生成
|
||
if not output_path:
|
||
output_dir = storage_dir("drama_analysis", create=True)
|
||
output_path = os.path.join(output_dir, f"analysis_{get_uuid(True)}.txt")
|
||
|
||
# 确保目录存在
|
||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||
|
||
# 保存结果
|
||
with open(output_path, 'w', encoding='utf-8') as f:
|
||
if analysis_result["status"] == "success":
|
||
f.write(analysis_result["analysis"])
|
||
else:
|
||
f.write(f"分析失败: {analysis_result['message']}")
|
||
|
||
logger.info(f"分析结果已保存到: {output_path}")
|
||
return output_path
|
||
|
||
except Exception as e:
|
||
logger.error(f"保存分析结果时发生错误: {str(e)}")
|
||
return ""
|
||
|
||
def generate_narration_script(self, short_name:str, plot_analysis: str, temperature: float = 0.7) -> Dict[str, Any]:
|
||
"""
|
||
根据剧情分析生成解说文案
|
||
|
||
Args:
|
||
short_name: 短剧名称
|
||
plot_analysis: 剧情分析内容
|
||
temperature: 生成温度,控制创造性,默认0.7
|
||
|
||
Returns:
|
||
Dict[str, Any]: 包含生成结果的字典
|
||
"""
|
||
try:
|
||
# 构建完整提示词
|
||
prompt = plot_writing % (short_name, plot_analysis)
|
||
|
||
# 构建请求体数据
|
||
payload = {
|
||
"model": self.model,
|
||
"messages": [
|
||
{"role": "system", "content": "你是一位专业的短视频解说脚本撰写专家。"},
|
||
{"role": "user", "content": prompt}
|
||
],
|
||
"temperature": temperature
|
||
}
|
||
|
||
# 对特定模型添加响应格式设置
|
||
if self.model not in ["deepseek-reasoner"]:
|
||
payload["response_format"] = {"type": "json_object"}
|
||
|
||
# 构建请求地址
|
||
url = f"{self.base_url}/chat/completions"
|
||
|
||
# 发送HTTP请求
|
||
response = requests.post(url, headers=self.headers, json=payload)
|
||
|
||
# 解析响应
|
||
if response.status_code == 200:
|
||
response_data = response.json()
|
||
|
||
# 提取响应内容
|
||
if "choices" in response_data and len(response_data["choices"]) > 0:
|
||
narration_script = response_data["choices"][0]["message"]["content"]
|
||
logger.debug(f"解说文案生成完成,消耗的tokens: {response_data.get('usage', {}).get('total_tokens', 0)}")
|
||
|
||
# 返回结果
|
||
return {
|
||
"status": "success",
|
||
"narration_script": narration_script,
|
||
"tokens_used": response_data.get("usage", {}).get("total_tokens", 0),
|
||
"model": self.model,
|
||
"temperature": self.temperature
|
||
}
|
||
else:
|
||
logger.error("解说文案生成失败: 未获取到有效响应")
|
||
return {
|
||
"status": "error",
|
||
"message": "未获取到有效响应",
|
||
"temperature": self.temperature
|
||
}
|
||
else:
|
||
error_msg = f"请求失败,状态码: {response.status_code}, 响应: {response.text}"
|
||
logger.error(error_msg)
|
||
return {
|
||
"status": "error",
|
||
"message": error_msg,
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
except Exception as e:
|
||
logger.error(f"解说文案生成过程中发生错误: {str(e)}")
|
||
return {
|
||
"status": "error",
|
||
"message": str(e),
|
||
"temperature": self.temperature
|
||
}
|
||
|
||
def save_narration_script(self, narration_result: Dict[str, Any], output_path: Optional[str] = None) -> str:
|
||
"""
|
||
保存解说文案到文件
|
||
|
||
Args:
|
||
narration_result: 解说文案生成结果
|
||
output_path: 输出文件路径,如果不提供则自动生成
|
||
|
||
Returns:
|
||
str: 输出文件的路径
|
||
"""
|
||
try:
|
||
# 如果未提供输出路径,则自动生成
|
||
if not output_path:
|
||
output_dir = storage_dir("narration_scripts", create=True)
|
||
output_path = os.path.join(output_dir, f"narration_{get_uuid(True)}.json")
|
||
|
||
# 确保目录存在
|
||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||
|
||
# 保存结果
|
||
with open(output_path, 'w', encoding='utf-8') as f:
|
||
if narration_result["status"] == "success":
|
||
f.write(narration_result["narration_script"])
|
||
else:
|
||
f.write(f"生成失败: {narration_result['message']}")
|
||
|
||
logger.info(f"解说文案已保存到: {output_path}")
|
||
return output_path
|
||
|
||
except Exception as e:
|
||
logger.error(f"保存解说文案时发生错误: {str(e)}")
|
||
return ""
|
||
|
||
|
||
def analyze_subtitle(
|
||
subtitle_content: str = None,
|
||
subtitle_file_path: str = None,
|
||
api_key: Optional[str] = None,
|
||
model: Optional[str] = None,
|
||
base_url: Optional[str] = None,
|
||
custom_prompt: Optional[str] = None,
|
||
temperature: float = 1.0,
|
||
save_result: bool = False,
|
||
output_path: Optional[str] = None
|
||
) -> Dict[str, Any]:
|
||
"""
|
||
分析字幕内容的便捷函数
|
||
|
||
Args:
|
||
subtitle_content: 字幕内容文本
|
||
subtitle_file_path: 字幕文件路径
|
||
custom_prompt: 自定义提示词
|
||
api_key: API密钥
|
||
model: 模型名称
|
||
base_url: API基础URL
|
||
temperature: 模型温度
|
||
save_result: 是否保存结果到文件
|
||
output_path: 输出文件路径
|
||
|
||
Returns:
|
||
Dict[str, Any]: 包含分析结果的字典
|
||
"""
|
||
# 初始化分析器
|
||
analyzer = SubtitleAnalyzer(
|
||
temperature=temperature,
|
||
api_key=api_key,
|
||
model=model,
|
||
base_url=base_url,
|
||
custom_prompt=custom_prompt
|
||
)
|
||
logger.debug(f"使用模型: {analyzer.model} 开始分析, 温度: {analyzer.temperature}")
|
||
# 分析字幕
|
||
if subtitle_content:
|
||
result = analyzer.analyze_subtitle(subtitle_content)
|
||
elif subtitle_file_path:
|
||
result = analyzer.analyze_subtitle_from_file(subtitle_file_path)
|
||
else:
|
||
return {
|
||
"status": "error",
|
||
"message": "必须提供字幕内容或字幕文件路径",
|
||
"temperature": temperature
|
||
}
|
||
|
||
# 保存结果
|
||
if save_result and result["status"] == "success":
|
||
result["output_path"] = analyzer.save_analysis_result(result, output_path)
|
||
|
||
return result
|
||
|
||
|
||
def generate_narration_script(
|
||
short_name: str = None,
|
||
plot_analysis: str = None,
|
||
api_key: Optional[str] = None,
|
||
model: Optional[str] = None,
|
||
base_url: Optional[str] = None,
|
||
temperature: float = 1.0,
|
||
save_result: bool = False,
|
||
output_path: Optional[str] = None
|
||
) -> Dict[str, Any]:
|
||
"""
|
||
根据剧情分析生成解说文案的便捷函数
|
||
|
||
Args:
|
||
short_name: 短剧名称
|
||
plot_analysis: 剧情分析内容,直接提供
|
||
api_key: API密钥
|
||
model: 模型名称
|
||
base_url: API基础URL
|
||
temperature: 生成温度,控制创造性
|
||
save_result: 是否保存结果到文件
|
||
output_path: 输出文件路径
|
||
|
||
Returns:
|
||
Dict[str, Any]: 包含生成结果的字典
|
||
"""
|
||
# 初始化分析器
|
||
analyzer = SubtitleAnalyzer(
|
||
temperature=temperature,
|
||
api_key=api_key,
|
||
model=model,
|
||
base_url=base_url
|
||
)
|
||
|
||
# 生成解说文案
|
||
result = analyzer.generate_narration_script(short_name, plot_analysis, temperature)
|
||
|
||
# 保存结果
|
||
if save_result and result["status"] == "success":
|
||
result["output_path"] = analyzer.save_narration_script(result, output_path)
|
||
|
||
return result
|
||
|
||
|
||
if __name__ == '__main__':
|
||
text_api_key = "skxxxx"
|
||
text_model = "gemini-2.0-flash"
|
||
text_base_url = "https://api.narratoai.cn/v1/chat/completions" # 确保URL不以斜杠结尾,便于后续拼接
|
||
subtitle_path = "/Users/apple/Desktop/home/NarratoAI/resource/srt/家里家外1-5.srt"
|
||
|
||
# 示例用法
|
||
if subtitle_path:
|
||
# 分析字幕总结剧情
|
||
analysis_result = analyze_subtitle(
|
||
subtitle_file_path=subtitle_path,
|
||
api_key=text_api_key,
|
||
model=text_model,
|
||
base_url=text_base_url,
|
||
save_result=True
|
||
)
|
||
|
||
if analysis_result["status"] == "success":
|
||
print("字幕分析成功!")
|
||
print("分析结果:")
|
||
print(analysis_result["analysis"])
|
||
|
||
# 根据剧情生成解说文案
|
||
narration_result = generate_narration_script(
|
||
plot_analysis=analysis_result["analysis"],
|
||
api_key=text_api_key,
|
||
model=text_model,
|
||
base_url=text_base_url,
|
||
save_result=True
|
||
)
|
||
|
||
if narration_result["status"] == "success":
|
||
print("\n解说文案生成成功!")
|
||
print("解说文案:")
|
||
print(narration_result["narration_script"])
|
||
else:
|
||
print(f"\n解说文案生成失败: {narration_result['message']}")
|
||
else:
|
||
print(f"分析失败: {analysis_result['message']}")
|