linyqh ee710499b9 refactor(webui): 优化音频设置界面并添加代理配置
- 修改支持的语音列表,仅保留中文语音
- 在主程序中添加代理配置环境变量
-优化剪辑视频函数,改为返回字典类型
- 更新任务服务中的剪辑视频函数,适应新的参数类型
- 修改测试用例中的视频剪辑函数,增加输出路径参数
- 更新脚本控制器中的剪辑视频函数,集成任务 ID 和子视频字典
2024-11-27 23:26:43 +08:00

1480 lines
31 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import re
import json
import traceback
import edge_tts
import asyncio
from loguru import logger
from typing import List
from datetime import datetime
from edge_tts.submaker import mktimestamp
from xml.sax.saxutils import unescape
from edge_tts import submaker, SubMaker
from moviepy.video.tools import subtitles
from app.config import config
from app.utils import utils
def get_all_azure_voices(filter_locals=None) -> list[str]:
if filter_locals is None:
filter_locals = ["zh-CN", "en-US", "zh-HK", "zh-TW", "vi-VN"]
voices_str = """
Name: af-ZA-AdriNeural
Gender: Female
Name: af-ZA-WillemNeural
Gender: Male
Name: am-ET-AmehaNeural
Gender: Male
Name: am-ET-MekdesNeural
Gender: Female
Name: ar-AE-FatimaNeural
Gender: Female
Name: ar-AE-HamdanNeural
Gender: Male
Name: ar-BH-AliNeural
Gender: Male
Name: ar-BH-LailaNeural
Gender: Female
Name: ar-DZ-AminaNeural
Gender: Female
Name: ar-DZ-IsmaelNeural
Gender: Male
Name: ar-EG-SalmaNeural
Gender: Female
Name: ar-EG-ShakirNeural
Gender: Male
Name: ar-IQ-BasselNeural
Gender: Male
Name: ar-IQ-RanaNeural
Gender: Female
Name: ar-JO-SanaNeural
Gender: Female
Name: ar-JO-TaimNeural
Gender: Male
Name: ar-KW-FahedNeural
Gender: Male
Name: ar-KW-NouraNeural
Gender: Female
Name: ar-LB-LaylaNeural
Gender: Female
Name: ar-LB-RamiNeural
Gender: Male
Name: ar-LY-ImanNeural
Gender: Female
Name: ar-LY-OmarNeural
Gender: Male
Name: ar-MA-JamalNeural
Gender: Male
Name: ar-MA-MounaNeural
Gender: Female
Name: ar-OM-AbdullahNeural
Gender: Male
Name: ar-OM-AyshaNeural
Gender: Female
Name: ar-QA-AmalNeural
Gender: Female
Name: ar-QA-MoazNeural
Gender: Male
Name: ar-SA-HamedNeural
Gender: Male
Name: ar-SA-ZariyahNeural
Gender: Female
Name: ar-SY-AmanyNeural
Gender: Female
Name: ar-SY-LaithNeural
Gender: Male
Name: ar-TN-HediNeural
Gender: Male
Name: ar-TN-ReemNeural
Gender: Female
Name: ar-YE-MaryamNeural
Gender: Female
Name: ar-YE-SalehNeural
Gender: Male
Name: az-AZ-BabekNeural
Gender: Male
Name: az-AZ-BanuNeural
Gender: Female
Name: bg-BG-BorislavNeural
Gender: Male
Name: bg-BG-KalinaNeural
Gender: Female
Name: bn-BD-NabanitaNeural
Gender: Female
Name: bn-BD-PradeepNeural
Gender: Male
Name: bn-IN-BashkarNeural
Gender: Male
Name: bn-IN-TanishaaNeural
Gender: Female
Name: bs-BA-GoranNeural
Gender: Male
Name: bs-BA-VesnaNeural
Gender: Female
Name: ca-ES-EnricNeural
Gender: Male
Name: ca-ES-JoanaNeural
Gender: Female
Name: cs-CZ-AntoninNeural
Gender: Male
Name: cs-CZ-VlastaNeural
Gender: Female
Name: cy-GB-AledNeural
Gender: Male
Name: cy-GB-NiaNeural
Gender: Female
Name: da-DK-ChristelNeural
Gender: Female
Name: da-DK-JeppeNeural
Gender: Male
Name: de-AT-IngridNeural
Gender: Female
Name: de-AT-JonasNeural
Gender: Male
Name: de-CH-JanNeural
Gender: Male
Name: de-CH-LeniNeural
Gender: Female
Name: de-DE-AmalaNeural
Gender: Female
Name: de-DE-ConradNeural
Gender: Male
Name: de-DE-FlorianMultilingualNeural
Gender: Male
Name: de-DE-KatjaNeural
Gender: Female
Name: de-DE-KillianNeural
Gender: Male
Name: de-DE-SeraphinaMultilingualNeural
Gender: Female
Name: el-GR-AthinaNeural
Gender: Female
Name: el-GR-NestorasNeural
Gender: Male
Name: en-AU-NatashaNeural
Gender: Female
Name: en-AU-WilliamNeural
Gender: Male
Name: en-CA-ClaraNeural
Gender: Female
Name: en-CA-LiamNeural
Gender: Male
Name: en-GB-LibbyNeural
Gender: Female
Name: en-GB-MaisieNeural
Gender: Female
Name: en-GB-RyanNeural
Gender: Male
Name: en-GB-SoniaNeural
Gender: Female
Name: en-GB-ThomasNeural
Gender: Male
Name: en-HK-SamNeural
Gender: Male
Name: en-HK-YanNeural
Gender: Female
Name: en-IE-ConnorNeural
Gender: Male
Name: en-IE-EmilyNeural
Gender: Female
Name: en-IN-NeerjaExpressiveNeural
Gender: Female
Name: en-IN-NeerjaNeural
Gender: Female
Name: en-IN-PrabhatNeural
Gender: Male
Name: en-KE-AsiliaNeural
Gender: Female
Name: en-KE-ChilembaNeural
Gender: Male
Name: en-NG-AbeoNeural
Gender: Male
Name: en-NG-EzinneNeural
Gender: Female
Name: en-NZ-MitchellNeural
Gender: Male
Name: en-NZ-MollyNeural
Gender: Female
Name: en-PH-JamesNeural
Gender: Male
Name: en-PH-RosaNeural
Gender: Female
Name: en-SG-LunaNeural
Gender: Female
Name: en-SG-WayneNeural
Gender: Male
Name: en-TZ-ElimuNeural
Gender: Male
Name: en-TZ-ImaniNeural
Gender: Female
Name: en-US-AnaNeural
Gender: Female
Name: en-US-AndrewNeural
Gender: Male
Name: en-US-AriaNeural
Gender: Female
Name: en-US-AvaNeural
Gender: Female
Name: en-US-BrianNeural
Gender: Male
Name: en-US-ChristopherNeural
Gender: Male
Name: en-US-EmmaNeural
Gender: Female
Name: en-US-EricNeural
Gender: Male
Name: en-US-GuyNeural
Gender: Male
Name: en-US-JennyNeural
Gender: Female
Name: en-US-MichelleNeural
Gender: Female
Name: en-US-RogerNeural
Gender: Male
Name: en-US-SteffanNeural
Gender: Male
Name: en-ZA-LeahNeural
Gender: Female
Name: en-ZA-LukeNeural
Gender: Male
Name: es-AR-ElenaNeural
Gender: Female
Name: es-AR-TomasNeural
Gender: Male
Name: es-BO-MarceloNeural
Gender: Male
Name: es-BO-SofiaNeural
Gender: Female
Name: es-CL-CatalinaNeural
Gender: Female
Name: es-CL-LorenzoNeural
Gender: Male
Name: es-CO-GonzaloNeural
Gender: Male
Name: es-CO-SalomeNeural
Gender: Female
Name: es-CR-JuanNeural
Gender: Male
Name: es-CR-MariaNeural
Gender: Female
Name: es-CU-BelkysNeural
Gender: Female
Name: es-CU-ManuelNeural
Gender: Male
Name: es-DO-EmilioNeural
Gender: Male
Name: es-DO-RamonaNeural
Gender: Female
Name: es-EC-AndreaNeural
Gender: Female
Name: es-EC-LuisNeural
Gender: Male
Name: es-ES-AlvaroNeural
Gender: Male
Name: es-ES-ElviraNeural
Gender: Female
Name: es-ES-XimenaNeural
Gender: Female
Name: es-GQ-JavierNeural
Gender: Male
Name: es-GQ-TeresaNeural
Gender: Female
Name: es-GT-AndresNeural
Gender: Male
Name: es-GT-MartaNeural
Gender: Female
Name: es-HN-CarlosNeural
Gender: Male
Name: es-HN-KarlaNeural
Gender: Female
Name: es-MX-DaliaNeural
Gender: Female
Name: es-MX-JorgeNeural
Gender: Male
Name: es-NI-FedericoNeural
Gender: Male
Name: es-NI-YolandaNeural
Gender: Female
Name: es-PA-MargaritaNeural
Gender: Female
Name: es-PA-RobertoNeural
Gender: Male
Name: es-PE-AlexNeural
Gender: Male
Name: es-PE-CamilaNeural
Gender: Female
Name: es-PR-KarinaNeural
Gender: Female
Name: es-PR-VictorNeural
Gender: Male
Name: es-PY-MarioNeural
Gender: Male
Name: es-PY-TaniaNeural
Gender: Female
Name: es-SV-LorenaNeural
Gender: Female
Name: es-SV-RodrigoNeural
Gender: Male
Name: es-US-AlonsoNeural
Gender: Male
Name: es-US-PalomaNeural
Gender: Female
Name: es-UY-MateoNeural
Gender: Male
Name: es-UY-ValentinaNeural
Gender: Female
Name: es-VE-PaolaNeural
Gender: Female
Name: es-VE-SebastianNeural
Gender: Male
Name: et-EE-AnuNeural
Gender: Female
Name: et-EE-KertNeural
Gender: Male
Name: fa-IR-DilaraNeural
Gender: Female
Name: fa-IR-FaridNeural
Gender: Male
Name: fi-FI-HarriNeural
Gender: Male
Name: fi-FI-NooraNeural
Gender: Female
Name: fil-PH-AngeloNeural
Gender: Male
Name: fil-PH-BlessicaNeural
Gender: Female
Name: fr-BE-CharlineNeural
Gender: Female
Name: fr-BE-GerardNeural
Gender: Male
Name: fr-CA-AntoineNeural
Gender: Male
Name: fr-CA-JeanNeural
Gender: Male
Name: fr-CA-SylvieNeural
Gender: Female
Name: fr-CA-ThierryNeural
Gender: Male
Name: fr-CH-ArianeNeural
Gender: Female
Name: fr-CH-FabriceNeural
Gender: Male
Name: fr-FR-DeniseNeural
Gender: Female
Name: fr-FR-EloiseNeural
Gender: Female
Name: fr-FR-HenriNeural
Gender: Male
Name: fr-FR-RemyMultilingualNeural
Gender: Male
Name: fr-FR-VivienneMultilingualNeural
Gender: Female
Name: ga-IE-ColmNeural
Gender: Male
Name: ga-IE-OrlaNeural
Gender: Female
Name: gl-ES-RoiNeural
Gender: Male
Name: gl-ES-SabelaNeural
Gender: Female
Name: gu-IN-DhwaniNeural
Gender: Female
Name: gu-IN-NiranjanNeural
Gender: Male
Name: he-IL-AvriNeural
Gender: Male
Name: he-IL-HilaNeural
Gender: Female
Name: hi-IN-MadhurNeural
Gender: Male
Name: hi-IN-SwaraNeural
Gender: Female
Name: hr-HR-GabrijelaNeural
Gender: Female
Name: hr-HR-SreckoNeural
Gender: Male
Name: hu-HU-NoemiNeural
Gender: Female
Name: hu-HU-TamasNeural
Gender: Male
Name: id-ID-ArdiNeural
Gender: Male
Name: id-ID-GadisNeural
Gender: Female
Name: is-IS-GudrunNeural
Gender: Female
Name: is-IS-GunnarNeural
Gender: Male
Name: it-IT-DiegoNeural
Gender: Male
Name: it-IT-ElsaNeural
Gender: Female
Name: it-IT-GiuseppeNeural
Gender: Male
Name: it-IT-IsabellaNeural
Gender: Female
Name: ja-JP-KeitaNeural
Gender: Male
Name: ja-JP-NanamiNeural
Gender: Female
Name: jv-ID-DimasNeural
Gender: Male
Name: jv-ID-SitiNeural
Gender: Female
Name: ka-GE-EkaNeural
Gender: Female
Name: ka-GE-GiorgiNeural
Gender: Male
Name: kk-KZ-AigulNeural
Gender: Female
Name: kk-KZ-DauletNeural
Gender: Male
Name: km-KH-PisethNeural
Gender: Male
Name: km-KH-SreymomNeural
Gender: Female
Name: kn-IN-GaganNeural
Gender: Male
Name: kn-IN-SapnaNeural
Gender: Female
Name: ko-KR-HyunsuNeural
Gender: Male
Name: ko-KR-InJoonNeural
Gender: Male
Name: ko-KR-SunHiNeural
Gender: Female
Name: lo-LA-ChanthavongNeural
Gender: Male
Name: lo-LA-KeomanyNeural
Gender: Female
Name: lt-LT-LeonasNeural
Gender: Male
Name: lt-LT-OnaNeural
Gender: Female
Name: lv-LV-EveritaNeural
Gender: Female
Name: lv-LV-NilsNeural
Gender: Male
Name: mk-MK-AleksandarNeural
Gender: Male
Name: mk-MK-MarijaNeural
Gender: Female
Name: ml-IN-MidhunNeural
Gender: Male
Name: ml-IN-SobhanaNeural
Gender: Female
Name: mn-MN-BataaNeural
Gender: Male
Name: mn-MN-YesuiNeural
Gender: Female
Name: mr-IN-AarohiNeural
Gender: Female
Name: mr-IN-ManoharNeural
Gender: Male
Name: ms-MY-OsmanNeural
Gender: Male
Name: ms-MY-YasminNeural
Gender: Female
Name: mt-MT-GraceNeural
Gender: Female
Name: mt-MT-JosephNeural
Gender: Male
Name: my-MM-NilarNeural
Gender: Female
Name: my-MM-ThihaNeural
Gender: Male
Name: nb-NO-FinnNeural
Gender: Male
Name: nb-NO-PernilleNeural
Gender: Female
Name: ne-NP-HemkalaNeural
Gender: Female
Name: ne-NP-SagarNeural
Gender: Male
Name: nl-BE-ArnaudNeural
Gender: Male
Name: nl-BE-DenaNeural
Gender: Female
Name: nl-NL-ColetteNeural
Gender: Female
Name: nl-NL-FennaNeural
Gender: Female
Name: nl-NL-MaartenNeural
Gender: Male
Name: pl-PL-MarekNeural
Gender: Male
Name: pl-PL-ZofiaNeural
Gender: Female
Name: ps-AF-GulNawazNeural
Gender: Male
Name: ps-AF-LatifaNeural
Gender: Female
Name: pt-BR-AntonioNeural
Gender: Male
Name: pt-BR-FranciscaNeural
Gender: Female
Name: pt-BR-ThalitaNeural
Gender: Female
Name: pt-PT-DuarteNeural
Gender: Male
Name: pt-PT-RaquelNeural
Gender: Female
Name: ro-RO-AlinaNeural
Gender: Female
Name: ro-RO-EmilNeural
Gender: Male
Name: ru-RU-DmitryNeural
Gender: Male
Name: ru-RU-SvetlanaNeural
Gender: Female
Name: si-LK-SameeraNeural
Gender: Male
Name: si-LK-ThiliniNeural
Gender: Female
Name: sk-SK-LukasNeural
Gender: Male
Name: sk-SK-ViktoriaNeural
Gender: Female
Name: sl-SI-PetraNeural
Gender: Female
Name: sl-SI-RokNeural
Gender: Male
Name: so-SO-MuuseNeural
Gender: Male
Name: so-SO-UbaxNeural
Gender: Female
Name: sq-AL-AnilaNeural
Gender: Female
Name: sq-AL-IlirNeural
Gender: Male
Name: sr-RS-NicholasNeural
Gender: Male
Name: sr-RS-SophieNeural
Gender: Female
Name: su-ID-JajangNeural
Gender: Male
Name: su-ID-TutiNeural
Gender: Female
Name: sv-SE-MattiasNeural
Gender: Male
Name: sv-SE-SofieNeural
Gender: Female
Name: sw-KE-RafikiNeural
Gender: Male
Name: sw-KE-ZuriNeural
Gender: Female
Name: sw-TZ-DaudiNeural
Gender: Male
Name: sw-TZ-RehemaNeural
Gender: Female
Name: ta-IN-PallaviNeural
Gender: Female
Name: ta-IN-ValluvarNeural
Gender: Male
Name: ta-LK-KumarNeural
Gender: Male
Name: ta-LK-SaranyaNeural
Gender: Female
Name: ta-MY-KaniNeural
Gender: Female
Name: ta-MY-SuryaNeural
Gender: Male
Name: ta-SG-AnbuNeural
Gender: Male
Name: ta-SG-VenbaNeural
Gender: Female
Name: te-IN-MohanNeural
Gender: Male
Name: te-IN-ShrutiNeural
Gender: Female
Name: th-TH-NiwatNeural
Gender: Male
Name: th-TH-PremwadeeNeural
Gender: Female
Name: tr-TR-AhmetNeural
Gender: Male
Name: tr-TR-EmelNeural
Gender: Female
Name: uk-UA-OstapNeural
Gender: Male
Name: uk-UA-PolinaNeural
Gender: Female
Name: ur-IN-GulNeural
Gender: Female
Name: ur-IN-SalmanNeural
Gender: Male
Name: ur-PK-AsadNeural
Gender: Male
Name: ur-PK-UzmaNeural
Gender: Female
Name: uz-UZ-MadinaNeural
Gender: Female
Name: uz-UZ-SardorNeural
Gender: Male
Name: vi-VN-HoaiMyNeural
Gender: Female
Name: vi-VN-NamMinhNeural
Gender: Male
Name: zh-CN-XiaoxiaoNeural
Gender: Female
Name: zh-CN-XiaoyiNeural
Gender: Female
Name: zh-CN-YunjianNeural
Gender: Male
Name: zh-CN-YunxiNeural
Gender: Male
Name: zh-CN-YunxiaNeural
Gender: Male
Name: zh-CN-YunyangNeural
Gender: Male
Name: zh-CN-liaoning-XiaobeiNeural
Gender: Female
Name: zh-CN-shaanxi-XiaoniNeural
Gender: Female
Name: zh-HK-HiuGaaiNeural
Gender: Female
Name: zh-HK-HiuMaanNeural
Gender: Female
Name: zh-HK-WanLungNeural
Gender: Male
Name: zh-TW-HsiaoChenNeural
Gender: Female
Name: zh-TW-HsiaoYuNeural
Gender: Female
Name: zh-TW-YunJheNeural
Gender: Male
Name: zu-ZA-ThandoNeural
Gender: Female
Name: zu-ZA-ThembaNeural
Gender: Male
Name: en-US-AvaMultilingualNeural-V2
Gender: Female
Name: en-US-AndrewMultilingualNeural-V2
Gender: Male
Name: en-US-EmmaMultilingualNeural-V2
Gender: Female
Name: en-US-BrianMultilingualNeural-V2
Gender: Male
Name: de-DE-FlorianMultilingualNeural-V2
Gender: Male
Name: de-DE-SeraphinaMultilingualNeural-V2
Gender: Female
Name: fr-FR-RemyMultilingualNeural-V2
Gender: Male
Name: fr-FR-VivienneMultilingualNeural-V2
Gender: Female
Name: zh-CN-XiaoxiaoMultilingualNeural-V2
Gender: Female
Name: zh-CN-YunxiNeural-V2
Gender: Male
""".strip()
voices = []
name = ""
for line in voices_str.split("\n"):
line = line.strip()
if not line:
continue
if line.startswith("Name: "):
name = line[6:].strip()
if line.startswith("Gender: "):
gender = line[8:].strip()
if name and gender:
# voices.append({
# "name": name,
# "gender": gender,
# })
if filter_locals:
for filter_local in filter_locals:
if name.lower().startswith(filter_local.lower()):
voices.append(f"{name}-{gender}")
else:
voices.append(f"{name}-{gender}")
name = ""
voices.sort()
return voices
def parse_voice_name(name: str):
# zh-CN-XiaoyiNeural-Female
# zh-CN-YunxiNeural-Male
# zh-CN-XiaoxiaoMultilingualNeural-V2-Female
name = name.replace("-Female", "").replace("-Male", "").strip()
return name
def is_azure_v2_voice(voice_name: str):
voice_name = parse_voice_name(voice_name)
if voice_name.endswith("-V2"):
return voice_name.replace("-V2", "").strip()
return ""
def tts(
text: str, voice_name: str, voice_rate: float, voice_pitch: float, voice_file: str
) -> [SubMaker, None]:
if is_azure_v2_voice(voice_name):
return azure_tts_v2(text, voice_name, voice_file)
return azure_tts_v1(text, voice_name, voice_rate, voice_pitch, voice_file)
def convert_rate_to_percent(rate: float) -> str:
if rate == 1.0:
return "+0%"
percent = round((rate - 1.0) * 100)
if percent > 0:
return f"+{percent}%"
else:
return f"{percent}%"
def convert_pitch_to_percent(rate: float) -> str:
if rate == 1.0:
return "+0Hz"
percent = round((rate - 1.0) * 100)
if percent > 0:
return f"+{percent}Hz"
else:
return f"{percent}Hz"
def azure_tts_v1(
text: str, voice_name: str, voice_rate: float, voice_pitch: float, voice_file: str
) -> [SubMaker, None]:
voice_name = parse_voice_name(voice_name)
text = text.strip()
rate_str = convert_rate_to_percent(voice_rate)
pitch_str = convert_pitch_to_percent(voice_pitch)
for i in range(3):
try:
logger.info(f"start, voice name: {voice_name}, try: {i + 1}")
async def _do() -> SubMaker:
communicate = edge_tts.Communicate(text, voice_name, rate=rate_str, pitch=pitch_str, proxy=config.proxy.get("http"))
sub_maker = edge_tts.SubMaker()
with open(voice_file, "wb") as file:
async for chunk in communicate.stream():
if chunk["type"] == "audio":
file.write(chunk["data"])
elif chunk["type"] == "WordBoundary":
sub_maker.create_sub(
(chunk["offset"], chunk["duration"]), chunk["text"]
)
return sub_maker
# 判断音频文件是否一件存在
if os.path.exists(voice_file):
logger.info(f"voice file exists, skip tts: {voice_file}")
continue
sub_maker = asyncio.run(_do())
if not sub_maker or not sub_maker.subs:
logger.warning(f"failed, sub_maker is None or sub_maker.subs is None")
continue
logger.info(f"completed, output file: {voice_file}")
return sub_maker
except Exception as e:
logger.error(f"failed, error: {str(e)}")
return None
def azure_tts_v2(text: str, voice_name: str, voice_file: str) -> [SubMaker, None]:
voice_name = is_azure_v2_voice(voice_name)
if not voice_name:
logger.error(f"invalid voice name: {voice_name}")
raise ValueError(f"invalid voice name: {voice_name}")
text = text.strip()
def _format_duration_to_offset(duration) -> int:
if isinstance(duration, str):
time_obj = datetime.strptime(duration, "%H:%M:%S.%f")
milliseconds = (
(time_obj.hour * 3600000)
+ (time_obj.minute * 60000)
+ (time_obj.second * 1000)
+ (time_obj.microsecond // 1000)
)
return milliseconds * 10000
if isinstance(duration, int):
return duration
return 0
for i in range(3):
try:
logger.info(f"start, voice name: {voice_name}, try: {i + 1}")
import azure.cognitiveservices.speech as speechsdk
sub_maker = SubMaker()
def speech_synthesizer_word_boundary_cb(evt: speechsdk.SessionEventArgs):
# print('WordBoundary event:')
# print('\tBoundaryType: {}'.format(evt.boundary_type))
# print('\tAudioOffset: {}ms'.format((evt.audio_offset + 5000)))
# print('\tDuration: {}'.format(evt.duration))
# print('\tText: {}'.format(evt.text))
# print('\tTextOffset: {}'.format(evt.text_offset))
# print('\tWordLength: {}'.format(evt.word_length))
duration = _format_duration_to_offset(str(evt.duration))
offset = _format_duration_to_offset(evt.audio_offset)
sub_maker.subs.append(evt.text)
sub_maker.offset.append((offset, offset + duration))
# Creates an instance of a speech config with specified subscription key and service region.
speech_key = config.azure.get("speech_key", "")
service_region = config.azure.get("speech_region", "")
audio_config = speechsdk.audio.AudioOutputConfig(
filename=voice_file, use_default_speaker=True
)
speech_config = speechsdk.SpeechConfig(
subscription=speech_key, region=service_region
)
speech_config.speech_synthesis_voice_name = voice_name
# speech_config.set_property(property_id=speechsdk.PropertyId.SpeechServiceResponse_RequestSentenceBoundary,
# value='true')
speech_config.set_property(
property_id=speechsdk.PropertyId.SpeechServiceResponse_RequestWordBoundary,
value="true",
)
speech_config.set_speech_synthesis_output_format(
speechsdk.SpeechSynthesisOutputFormat.Audio48Khz192KBitRateMonoMp3
)
speech_synthesizer = speechsdk.SpeechSynthesizer(
audio_config=audio_config, speech_config=speech_config
)
speech_synthesizer.synthesis_word_boundary.connect(
speech_synthesizer_word_boundary_cb
)
result = speech_synthesizer.speak_text_async(text).get()
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
logger.success(f"azure v2 speech synthesis succeeded: {voice_file}")
return sub_maker
elif result.reason == speechsdk.ResultReason.Canceled:
cancellation_details = result.cancellation_details
logger.error(
f"azure v2 speech synthesis canceled: {cancellation_details.reason}"
)
if cancellation_details.reason == speechsdk.CancellationReason.Error:
logger.error(
f"azure v2 speech synthesis error: {cancellation_details.error_details}"
)
logger.info(f"completed, output file: {voice_file}")
except Exception as e:
logger.error(f"failed, error: {str(e)}")
return None
def _format_text(text: str) -> str:
# text = text.replace("\n", " ")
text = text.replace("[", " ")
text = text.replace("]", " ")
text = text.replace("(", " ")
text = text.replace(")", " ")
text = text.replace("{", " ")
text = text.replace("}", " ")
text = text.strip()
return text
def create_subtitle_from_multiple(text: str, sub_maker_list: List[SubMaker], list_script: List[dict],
subtitle_file: str):
"""
根据多个 SubMaker 对象、完整文本和原始脚本创建优化的字幕文件
1. 使用原始脚本中的时间戳
2. 跳过 OST 为 true 的部分
3. 将字幕文件按照标点符号分割成多行
4. 根据完整文本分段,保持原文的语句结构
5. 生成新的字幕文件,时间戳包含小时单位
"""
text = _format_text(text)
sentences = utils.split_string_by_punctuations(text)
def formatter(idx: int, start_time: str, end_time: str, sub_text: str) -> str:
return f"{idx}\n{start_time.replace('.', ',')} --> {end_time.replace('.', ',')}\n{sub_text}\n"
sub_items = []
sub_index = 0
sentence_index = 0
try:
sub_maker_index = 0
for script_item in list_script:
if script_item['OST']:
continue
start_time, end_time = script_item['new_timestamp'].split('-')
if sub_maker_index >= len(sub_maker_list):
logger.error(f"Sub maker list index out of range: {sub_maker_index}")
break
sub_maker = sub_maker_list[sub_maker_index]
sub_maker_index += 1
script_duration = utils.time_to_seconds(end_time) - utils.time_to_seconds(start_time)
audio_duration = get_audio_duration(sub_maker)
time_ratio = script_duration / audio_duration if audio_duration > 0 else 1
current_sub = ""
current_start = None
current_end = None
for offset, sub in zip(sub_maker.offset, sub_maker.subs):
sub = unescape(sub).strip()
sub_start = utils.seconds_to_time(utils.time_to_seconds(start_time) + offset[0] / 10000000 * time_ratio)
sub_end = utils.seconds_to_time(utils.time_to_seconds(start_time) + offset[1] / 10000000 * time_ratio)
if current_start is None:
current_start = sub_start
current_end = sub_end
current_sub += sub
# 检查当前累积的字幕是否匹配下一个句子
while sentence_index < len(sentences) and sentences[sentence_index] in current_sub:
sub_index += 1
line = formatter(
idx=sub_index,
start_time=current_start,
end_time=current_end,
sub_text=sentences[sentence_index].strip(),
)
sub_items.append(line)
current_sub = current_sub.replace(sentences[sentence_index], "", 1).strip()
current_start = current_end
sentence_index += 1
# 如果当前字幕长度超过15个字符也生成一个新的字幕项
if len(current_sub) > 15:
sub_index += 1
line = formatter(
idx=sub_index,
start_time=current_start,
end_time=current_end,
sub_text=current_sub.strip(),
)
sub_items.append(line)
current_sub = ""
current_start = current_end
# 处理剩余的文本
if current_sub.strip():
sub_index += 1
line = formatter(
idx=sub_index,
start_time=current_start,
end_time=current_end,
sub_text=current_sub.strip(),
)
sub_items.append(line)
if len(sub_items) == 0:
logger.error("No subtitle items generated")
return
with open(subtitle_file, "w", encoding="utf-8") as file:
file.write("\n".join(sub_items))
logger.info(f"completed, subtitle file created: {subtitle_file}")
except Exception as e:
logger.error(f"failed, error: {str(e)}")
traceback.print_exc()
def create_subtitle(sub_maker: submaker.SubMaker, text: str, subtitle_file: str):
"""
优化字幕文件
1. 将字幕文件按照标点符号分割成多行
2. 逐行匹配字幕文件中的文本
3. 生成新的字幕文件
"""
text = _format_text(text)
def formatter(idx: int, start_time: float, end_time: float, sub_text: str) -> str:
"""
1
00:00:00,000 --> 00:00:02,360
跑步是一项简单易行的运动
"""
start_t = mktimestamp(start_time).replace(".", ",")
end_t = mktimestamp(end_time).replace(".", ",")
return f"{idx}\n" f"{start_t} --> {end_t}\n" f"{sub_text}\n"
start_time = -1.0
sub_items = []
sub_index = 0
script_lines = utils.split_string_by_punctuations(text)
def match_line(_sub_line: str, _sub_index: int):
if len(script_lines) <= _sub_index:
return ""
_line = script_lines[_sub_index]
if _sub_line == _line:
return script_lines[_sub_index].strip()
_sub_line_ = re.sub(r"[^\w\s]", "", _sub_line)
_line_ = re.sub(r"[^\w\s]", "", _line)
if _sub_line_ == _line_:
return _line_.strip()
_sub_line_ = re.sub(r"\W+", "", _sub_line)
_line_ = re.sub(r"\W+", "", _line)
if _sub_line_ == _line_:
return _line.strip()
return ""
sub_line = ""
try:
for _, (offset, sub) in enumerate(zip(sub_maker.offset, sub_maker.subs)):
_start_time, end_time = offset
if start_time < 0:
start_time = _start_time
sub = unescape(sub)
sub_line += sub
sub_text = match_line(sub_line, sub_index)
if sub_text:
sub_index += 1
line = formatter(
idx=sub_index,
start_time=start_time,
end_time=end_time,
sub_text=sub_text,
)
sub_items.append(line)
start_time = -1.0
sub_line = ""
if len(sub_items) == len(script_lines):
with open(subtitle_file, "w", encoding="utf-8") as file:
file.write("\n".join(sub_items) + "\n")
try:
sbs = subtitles.file_to_subtitles(subtitle_file, encoding="utf-8")
duration = max([tb for ((ta, tb), txt) in sbs])
logger.info(
f"completed, subtitle file created: {subtitle_file}, duration: {duration}"
)
except Exception as e:
logger.error(f"failed, error: {str(e)}")
os.remove(subtitle_file)
else:
logger.warning(
f"failed, sub_items len: {len(sub_items)}, script_lines len: {len(script_lines)}"
)
except Exception as e:
logger.error(f"failed, error: {str(e)}")
def get_audio_duration(sub_maker: submaker.SubMaker):
"""
获取音频时长
"""
if not sub_maker.offset:
return 0.0
return sub_maker.offset[-1][1] / 10000000
def tts_multiple(task_id: str, list_script: list, voice_name: str, voice_rate: float, voice_pitch: float, force_regenerate: bool = True):
"""
根据JSON文件中的多段文本进行TTS转换
:param task_id: 任务ID
:param list_script: 脚本列表
:param voice_name: 语音名称
:param voice_rate: 语音速率
:param force_regenerate: 是否强制重新生成已存在的音频文件
:return: 生成的音频文件列表
"""
voice_name = parse_voice_name(voice_name)
output_dir = utils.task_dir(task_id)
audio_files = []
sub_maker_list = []
for item in list_script:
if item['OST'] != 1:
# 将时间戳中的冒号替换为下划线
timestamp = item['new_timestamp'].replace(':', '_')
audio_file = os.path.join(output_dir, f"audio_{timestamp}.mp3")
# 检查文件是否已存在,如存在且不强制重新生成,则跳过
if os.path.exists(audio_file) and not force_regenerate:
logger.info(f"音频文件已存在,跳过生成: {audio_file}")
audio_files.append(audio_file)
continue
text = item['narration']
sub_maker = tts(
text=text,
voice_name=voice_name,
voice_rate=voice_rate,
voice_pitch=voice_pitch,
voice_file=audio_file,
)
if sub_maker is None:
logger.error(f"无法为时间戳 {timestamp} 生成音频; "
f"如果您在中国请使用VPN。或者手动选择 zh-CN-YunyangNeural 等角色;"
f"或者使用其他 tts 引擎")
continue
audio_files.append(audio_file)
sub_maker_list.append(sub_maker)
logger.info(f"已生成音频文件: {audio_file}")
return audio_files, sub_maker_list
if __name__ == "__main__":
voice_name = "zh-CN-YunyangNeural"
# voice_name = "af-ZA-AdriNeural"
voice_name = parse_voice_name(voice_name)
print(voice_name)
with open("../../resource/scripts/test.json", 'r', encoding='utf-8') as f:
data = json.load(f)
audio_files, sub_maker_list = tts_multiple(task_id="12312312", list_script=data, voice_name=voice_name, voice_rate=1)
full_text = " ".join([item['narration'] for item in data if not item['OST']])
subtitle_file = os.path.join(utils.task_dir("12312312"), "subtitle_multiple.srt")
create_subtitle_from_multiple(full_text, sub_maker_list, data, subtitle_file)
print(f"生成的音频文件列表: {audio_files}")
print(f"生成的字幕文件: {subtitle_file}")
# text = " ".join([item['narration'] for item in data])
# sub_marks = tts(text=text, voice_name=voice_name, voice_rate=1, voice_file="../../storage/tasks/12312312/aaa.mp3")
# create_subtitle(text=text, sub_maker=sub_marks, subtitle_file="../../storage/tasks/12312312/subtitle_123.srt")