mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-12 03:02:48 +00:00
378 lines
14 KiB
Python
378 lines
14 KiB
Python
import os
|
|
import json
|
|
import time
|
|
import asyncio
|
|
import requests
|
|
from loguru import logger
|
|
from typing import List, Dict, Any, Callable
|
|
|
|
from app.utils import utils, vision_analyzer, video_processor, video_processor_v2
|
|
from app.utils.script_generator import ScriptProcessor
|
|
from app.config import config
|
|
|
|
|
|
class ScriptGenerator:
|
|
def __init__(self):
|
|
self.temp_dir = utils.temp_dir()
|
|
self.keyframes_dir = os.path.join(self.temp_dir, "keyframes")
|
|
|
|
async def generate_script(
|
|
self,
|
|
video_path: str,
|
|
video_theme: str = "",
|
|
custom_prompt: str = "",
|
|
skip_seconds: int = 0,
|
|
threshold: int = 30,
|
|
vision_batch_size: int = 5,
|
|
vision_llm_provider: str = "gemini",
|
|
progress_callback: Callable[[float, str], None] = None
|
|
) -> List[Dict[Any, Any]]:
|
|
"""
|
|
生成视频脚本的核心逻辑
|
|
|
|
Args:
|
|
video_path: 视频文件路径
|
|
video_theme: 视频主题
|
|
custom_prompt: 自定义提示词
|
|
skip_seconds: 跳过开始的秒数
|
|
threshold: 差异阈值
|
|
vision_batch_size: 视觉处理批次大小
|
|
vision_llm_provider: 视觉模型提供商
|
|
progress_callback: 进度回调函数
|
|
|
|
Returns:
|
|
List[Dict]: 生成的视频脚本
|
|
"""
|
|
if progress_callback is None:
|
|
progress_callback = lambda p, m: None
|
|
|
|
try:
|
|
# 提取关键帧
|
|
progress_callback(10, "正在提取关键帧...")
|
|
keyframe_files = await self._extract_keyframes(
|
|
video_path,
|
|
skip_seconds,
|
|
threshold
|
|
)
|
|
|
|
if vision_llm_provider == "gemini":
|
|
script = await self._process_with_gemini(
|
|
keyframe_files,
|
|
video_theme,
|
|
custom_prompt,
|
|
vision_batch_size,
|
|
progress_callback
|
|
)
|
|
elif vision_llm_provider == "narratoapi":
|
|
script = await self._process_with_narrato(
|
|
keyframe_files,
|
|
video_theme,
|
|
custom_prompt,
|
|
vision_batch_size,
|
|
progress_callback
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported vision provider: {vision_llm_provider}")
|
|
|
|
return json.loads(script) if isinstance(script, str) else script
|
|
|
|
except Exception as e:
|
|
logger.exception("Generate script failed")
|
|
raise
|
|
|
|
async def _extract_keyframes(
|
|
self,
|
|
video_path: str,
|
|
skip_seconds: int,
|
|
threshold: int
|
|
) -> List[str]:
|
|
"""提取视频关键帧"""
|
|
video_hash = utils.md5(video_path + str(os.path.getmtime(video_path)))
|
|
video_keyframes_dir = os.path.join(self.keyframes_dir, video_hash)
|
|
|
|
# 检查缓存
|
|
keyframe_files = []
|
|
if os.path.exists(video_keyframes_dir):
|
|
for filename in sorted(os.listdir(video_keyframes_dir)):
|
|
if filename.endswith('.jpg'):
|
|
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
|
|
|
|
if keyframe_files:
|
|
logger.info(f"Using cached keyframes: {video_keyframes_dir}")
|
|
return keyframe_files
|
|
|
|
# 提取新的关键帧
|
|
os.makedirs(video_keyframes_dir, exist_ok=True)
|
|
|
|
try:
|
|
if config.frames.get("version") == "v2":
|
|
processor = video_processor_v2.VideoProcessor(video_path)
|
|
processor.process_video_pipeline(
|
|
output_dir=video_keyframes_dir,
|
|
skip_seconds=skip_seconds,
|
|
threshold=threshold
|
|
)
|
|
else:
|
|
processor = video_processor.VideoProcessor(video_path)
|
|
processor.process_video(
|
|
output_dir=video_keyframes_dir,
|
|
skip_seconds=skip_seconds
|
|
)
|
|
|
|
for filename in sorted(os.listdir(video_keyframes_dir)):
|
|
if filename.endswith('.jpg'):
|
|
keyframe_files.append(os.path.join(video_keyframes_dir, filename))
|
|
|
|
return keyframe_files
|
|
|
|
except Exception as e:
|
|
if os.path.exists(video_keyframes_dir):
|
|
import shutil
|
|
shutil.rmtree(video_keyframes_dir)
|
|
raise
|
|
|
|
async def _process_with_gemini(
|
|
self,
|
|
keyframe_files: List[str],
|
|
video_theme: str,
|
|
custom_prompt: str,
|
|
vision_batch_size: int,
|
|
progress_callback: Callable[[float, str], None]
|
|
) -> str:
|
|
"""使用Gemini处理视频帧"""
|
|
progress_callback(30, "正在初始化视觉分析器...")
|
|
|
|
# 获取Gemini配置
|
|
vision_api_key = config.app.get("vision_gemini_api_key")
|
|
vision_model = config.app.get("vision_gemini_model_name")
|
|
|
|
if not vision_api_key or not vision_model:
|
|
raise ValueError("未配置 Gemini API Key 或者模型")
|
|
|
|
analyzer = vision_analyzer.VisionAnalyzer(
|
|
model_name=vision_model,
|
|
api_key=vision_api_key,
|
|
)
|
|
|
|
progress_callback(40, "正在分析关键帧...")
|
|
|
|
# 执行异步分析
|
|
results = await analyzer.analyze_images(
|
|
images=keyframe_files,
|
|
prompt=config.app.get('vision_analysis_prompt'),
|
|
batch_size=vision_batch_size
|
|
)
|
|
|
|
progress_callback(60, "正在整理分析结果...")
|
|
|
|
# 合并所有批次的分析结果
|
|
frame_analysis = ""
|
|
prev_batch_files = None
|
|
|
|
for result in results:
|
|
if 'error' in result:
|
|
logger.warning(f"批次 {result['batch_index']} 处理出现警告: {result['error']}")
|
|
continue
|
|
|
|
batch_files = self._get_batch_files(keyframe_files, result, vision_batch_size)
|
|
first_timestamp, last_timestamp, _ = self._get_batch_timestamps(batch_files, prev_batch_files)
|
|
|
|
# 添加带时间戳的分析结果
|
|
frame_analysis += f"\n=== {first_timestamp}-{last_timestamp} ===\n"
|
|
frame_analysis += result['response']
|
|
frame_analysis += "\n"
|
|
|
|
prev_batch_files = batch_files
|
|
|
|
if not frame_analysis.strip():
|
|
raise Exception("未能生成有效的帧分析结果")
|
|
|
|
progress_callback(70, "正在生成脚本...")
|
|
|
|
# 构建帧内容列表
|
|
frame_content_list = []
|
|
prev_batch_files = None
|
|
|
|
for result in results:
|
|
if 'error' in result:
|
|
continue
|
|
|
|
batch_files = self._get_batch_files(keyframe_files, result, vision_batch_size)
|
|
_, _, timestamp_range = self._get_batch_timestamps(batch_files, prev_batch_files)
|
|
|
|
frame_content = {
|
|
"timestamp": timestamp_range,
|
|
"picture": result['response'],
|
|
"narration": "",
|
|
"OST": 2
|
|
}
|
|
frame_content_list.append(frame_content)
|
|
prev_batch_files = batch_files
|
|
|
|
if not frame_content_list:
|
|
raise Exception("没有有效的帧内容可以处理")
|
|
|
|
progress_callback(90, "正在生成文案...")
|
|
|
|
# 获取文本生成配置
|
|
text_provider = config.app.get('text_llm_provider', 'gemini').lower()
|
|
text_api_key = config.app.get(f'text_{text_provider}_api_key')
|
|
text_model = config.app.get(f'text_{text_provider}_model_name')
|
|
|
|
processor = ScriptProcessor(
|
|
model_name=text_model,
|
|
api_key=text_api_key,
|
|
prompt=custom_prompt,
|
|
video_theme=video_theme
|
|
)
|
|
|
|
return processor.process_frames(frame_content_list)
|
|
|
|
async def _process_with_narrato(
|
|
self,
|
|
keyframe_files: List[str],
|
|
video_theme: str,
|
|
custom_prompt: str,
|
|
vision_batch_size: int,
|
|
progress_callback: Callable[[float, str], None]
|
|
) -> str:
|
|
"""使用NarratoAPI处理视频帧"""
|
|
# 创建临时目录
|
|
temp_dir = utils.temp_dir("narrato")
|
|
|
|
# 打包关键帧
|
|
progress_callback(30, "正在打包关键帧...")
|
|
zip_path = os.path.join(temp_dir, f"keyframes_{int(time.time())}.zip")
|
|
|
|
try:
|
|
if not utils.create_zip(keyframe_files, zip_path):
|
|
raise Exception("打包关键帧失败")
|
|
|
|
# 获取API配置
|
|
api_url = config.app.get("narrato_api_url")
|
|
api_key = config.app.get("narrato_api_key")
|
|
|
|
if not api_key:
|
|
raise ValueError("未配置 Narrato API Key")
|
|
|
|
headers = {
|
|
'X-API-Key': api_key,
|
|
'accept': 'application/json'
|
|
}
|
|
|
|
api_params = {
|
|
'batch_size': vision_batch_size,
|
|
'use_ai': False,
|
|
'start_offset': 0,
|
|
'vision_model': config.app.get('narrato_vision_model', 'gemini-1.5-flash'),
|
|
'vision_api_key': config.app.get('narrato_vision_key'),
|
|
'llm_model': config.app.get('narrato_llm_model', 'qwen-plus'),
|
|
'llm_api_key': config.app.get('narrato_llm_key'),
|
|
'custom_prompt': custom_prompt
|
|
}
|
|
|
|
progress_callback(40, "正在上传文件...")
|
|
with open(zip_path, 'rb') as f:
|
|
files = {'file': (os.path.basename(zip_path), f, 'application/x-zip-compressed')}
|
|
response = requests.post(
|
|
f"{api_url}/video/analyze",
|
|
headers=headers,
|
|
params=api_params,
|
|
files=files,
|
|
timeout=30
|
|
)
|
|
response.raise_for_status()
|
|
|
|
task_data = response.json()
|
|
task_id = task_data["data"].get('task_id')
|
|
if not task_id:
|
|
raise Exception(f"无效的API响应: {response.text}")
|
|
|
|
progress_callback(50, "正在等待分析结果...")
|
|
retry_count = 0
|
|
max_retries = 60
|
|
|
|
while retry_count < max_retries:
|
|
try:
|
|
status_response = requests.get(
|
|
f"{api_url}/video/tasks/{task_id}",
|
|
headers=headers,
|
|
timeout=10
|
|
)
|
|
status_response.raise_for_status()
|
|
task_status = status_response.json()['data']
|
|
|
|
if task_status['status'] == 'SUCCESS':
|
|
return task_status['result']['data']
|
|
elif task_status['status'] in ['FAILURE', 'RETRY']:
|
|
raise Exception(f"任务失败: {task_status.get('error')}")
|
|
|
|
retry_count += 1
|
|
time.sleep(2)
|
|
|
|
except requests.RequestException as e:
|
|
logger.warning(f"获取任务状态失败,重试中: {str(e)}")
|
|
retry_count += 1
|
|
time.sleep(2)
|
|
continue
|
|
|
|
raise Exception("任务执行超时")
|
|
|
|
finally:
|
|
# 清理临时文件
|
|
try:
|
|
if os.path.exists(zip_path):
|
|
os.remove(zip_path)
|
|
except Exception as e:
|
|
logger.warning(f"清理临时文件失败: {str(e)}")
|
|
|
|
def _get_batch_files(
|
|
self,
|
|
keyframe_files: List[str],
|
|
result: Dict[str, Any],
|
|
batch_size: int
|
|
) -> List[str]:
|
|
"""获取当前批次的图片文件"""
|
|
batch_start = result['batch_index'] * batch_size
|
|
batch_end = min(batch_start + batch_size, len(keyframe_files))
|
|
return keyframe_files[batch_start:batch_end]
|
|
|
|
def _get_batch_timestamps(
|
|
self,
|
|
batch_files: List[str],
|
|
prev_batch_files: List[str] = None
|
|
) -> tuple[str, str, str]:
|
|
"""获取一批文件的时间戳范围"""
|
|
if not batch_files:
|
|
logger.warning("Empty batch files")
|
|
return "00:00", "00:00", "00:00-00:00"
|
|
|
|
if len(batch_files) == 1 and prev_batch_files and len(prev_batch_files) > 0:
|
|
first_frame = os.path.basename(prev_batch_files[-1])
|
|
last_frame = os.path.basename(batch_files[0])
|
|
else:
|
|
first_frame = os.path.basename(batch_files[0])
|
|
last_frame = os.path.basename(batch_files[-1])
|
|
|
|
first_time = first_frame.split('_')[2].replace('.jpg', '')
|
|
last_time = last_frame.split('_')[2].replace('.jpg', '')
|
|
|
|
def format_timestamp(time_str: str) -> str:
|
|
if len(time_str) < 4:
|
|
logger.warning(f"Invalid timestamp format: {time_str}")
|
|
return "00:00"
|
|
|
|
minutes = int(time_str[-4:-2])
|
|
seconds = int(time_str[-2:])
|
|
|
|
if seconds >= 60:
|
|
minutes += seconds // 60
|
|
seconds = seconds % 60
|
|
|
|
return f"{minutes:02d}:{seconds:02d}"
|
|
|
|
first_timestamp = format_timestamp(first_time)
|
|
last_timestamp = format_timestamp(last_time)
|
|
timestamp_range = f"{first_timestamp}-{last_timestamp}"
|
|
|
|
return first_timestamp, last_timestamp, timestamp_range |