mirror of
https://github.com/linyqh/NarratoAI.git
synced 2025-12-11 10:32:49 +00:00
944 lines
34 KiB
Python
944 lines
34 KiB
Python
import traceback
|
||
|
||
import streamlit as st
|
||
import os
|
||
from app.config import config
|
||
from app.utils import utils
|
||
from loguru import logger
|
||
from app.services.llm.unified_service import UnifiedLLMService
|
||
|
||
|
||
def validate_api_key(api_key: str, provider: str) -> tuple[bool, str]:
|
||
"""验证API密钥格式"""
|
||
if not api_key or not api_key.strip():
|
||
return False, f"{provider} API密钥不能为空"
|
||
|
||
# 基本长度检查
|
||
if len(api_key.strip()) < 10:
|
||
return False, f"{provider} API密钥长度过短,请检查是否正确"
|
||
|
||
return True, ""
|
||
|
||
|
||
def validate_base_url(base_url: str, provider: str) -> tuple[bool, str]:
|
||
"""验证Base URL格式"""
|
||
if not base_url or not base_url.strip():
|
||
return True, "" # base_url可以为空
|
||
|
||
base_url = base_url.strip()
|
||
if not (base_url.startswith('http://') or base_url.startswith('https://')):
|
||
return False, f"{provider} Base URL必须以http://或https://开头"
|
||
|
||
return True, ""
|
||
|
||
|
||
def validate_model_name(model_name: str, provider: str) -> tuple[bool, str]:
|
||
"""验证模型名称"""
|
||
if not model_name or not model_name.strip():
|
||
return False, f"{provider} 模型名称不能为空"
|
||
|
||
return True, ""
|
||
|
||
|
||
def validate_litellm_model_name(model_name: str, model_type: str) -> tuple[bool, str]:
|
||
"""验证 LiteLLM 模型名称格式
|
||
|
||
Args:
|
||
model_name: 模型名称,应为 provider/model 格式
|
||
model_type: 模型类型(如"视频分析"、"文案生成")
|
||
|
||
Returns:
|
||
(是否有效, 错误消息)
|
||
"""
|
||
if not model_name or not model_name.strip():
|
||
return False, f"{model_type} 模型名称不能为空"
|
||
|
||
model_name = model_name.strip()
|
||
|
||
# LiteLLM 推荐格式:provider/model(如 gemini/gemini-2.0-flash-lite)
|
||
# 但也支持直接的模型名称(如 gpt-4o,LiteLLM 会自动推断 provider)
|
||
|
||
# 检查是否包含 provider 前缀(推荐格式)
|
||
if "/" in model_name:
|
||
parts = model_name.split("/")
|
||
if len(parts) < 2 or not parts[0] or not parts[1]:
|
||
return False, f"{model_type} 模型名称格式错误。推荐格式: provider/model (如 gemini/gemini-2.0-flash-lite)"
|
||
|
||
# 验证 provider 名称(只允许字母、数字、下划线、连字符)
|
||
provider = parts[0]
|
||
if not provider.replace("-", "").replace("_", "").isalnum():
|
||
return False, f"{model_type} Provider 名称只能包含字母、数字、下划线和连字符"
|
||
else:
|
||
# 直接模型名称也是有效的(LiteLLM 会自动推断)
|
||
# 但给出警告建议使用完整格式
|
||
logger.debug(f"{model_type} 模型名称未包含 provider 前缀,LiteLLM 将自动推断")
|
||
|
||
# 基本长度检查
|
||
if len(model_name) < 3:
|
||
return False, f"{model_type} 模型名称过短"
|
||
|
||
if len(model_name) > 200:
|
||
return False, f"{model_type} 模型名称过长"
|
||
|
||
return True, ""
|
||
|
||
|
||
def show_config_validation_errors(errors: list):
|
||
"""显示配置验证错误"""
|
||
if errors:
|
||
for error in errors:
|
||
st.error(error)
|
||
|
||
|
||
def render_basic_settings(tr):
|
||
"""渲染基础设置面板"""
|
||
with st.expander(tr("Basic Settings"), expanded=False):
|
||
config_panels = st.columns(3)
|
||
left_config_panel = config_panels[0]
|
||
middle_config_panel = config_panels[1]
|
||
right_config_panel = config_panels[2]
|
||
|
||
with left_config_panel:
|
||
render_language_settings(tr)
|
||
render_proxy_settings(tr)
|
||
|
||
with middle_config_panel:
|
||
render_vision_llm_settings(tr) # 视频分析模型设置
|
||
|
||
with right_config_panel:
|
||
render_text_llm_settings(tr) # 文案生成模型设置
|
||
|
||
|
||
def render_language_settings(tr):
|
||
st.subheader(tr("Proxy Settings"))
|
||
|
||
"""渲染语言设置"""
|
||
system_locale = utils.get_system_locale()
|
||
i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n")
|
||
locales = utils.load_locales(i18n_dir)
|
||
|
||
display_languages = []
|
||
selected_index = 0
|
||
for i, code in enumerate(locales.keys()):
|
||
display_languages.append(f"{code} - {locales[code].get('Language')}")
|
||
if code == st.session_state.get('ui_language', system_locale):
|
||
selected_index = i
|
||
|
||
selected_language = st.selectbox(
|
||
tr("Language"),
|
||
options=display_languages,
|
||
index=selected_index
|
||
)
|
||
|
||
if selected_language:
|
||
code = selected_language.split(" - ")[0].strip()
|
||
st.session_state['ui_language'] = code
|
||
config.ui['language'] = code
|
||
|
||
|
||
def render_proxy_settings(tr):
|
||
"""渲染代理设置"""
|
||
# 获取当前代理状态
|
||
proxy_enabled = config.proxy.get("enabled", False)
|
||
proxy_url_http = config.proxy.get("http")
|
||
proxy_url_https = config.proxy.get("https")
|
||
|
||
# 添加代理开关
|
||
proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled)
|
||
|
||
# 保存代理开关状态
|
||
# config.proxy["enabled"] = proxy_enabled
|
||
|
||
# 只有在代理启用时才显示代理设置输入框
|
||
if proxy_enabled:
|
||
HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http)
|
||
HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https)
|
||
|
||
if HTTP_PROXY and HTTPS_PROXY:
|
||
config.proxy["http"] = HTTP_PROXY
|
||
config.proxy["https"] = HTTPS_PROXY
|
||
os.environ["HTTP_PROXY"] = HTTP_PROXY
|
||
os.environ["HTTPS_PROXY"] = HTTPS_PROXY
|
||
# logger.debug(f"代理已启用: {HTTP_PROXY}")
|
||
else:
|
||
# 当代理被禁用时,清除环境变量和配置
|
||
os.environ.pop("HTTP_PROXY", None)
|
||
os.environ.pop("HTTPS_PROXY", None)
|
||
# config.proxy["http"] = ""
|
||
# config.proxy["https"] = ""
|
||
|
||
|
||
def test_vision_model_connection(api_key, base_url, model_name, provider, tr):
|
||
"""测试视觉模型连接
|
||
|
||
Args:
|
||
api_key: API密钥
|
||
base_url: 基础URL
|
||
model_name: 模型名称
|
||
provider: 提供商名称
|
||
|
||
Returns:
|
||
bool: 连接是否成功
|
||
str: 测试结果消息
|
||
"""
|
||
import requests
|
||
logger.debug(f"大模型连通性测试: {base_url} 模型: {model_name} apikey: {api_key}")
|
||
if provider.lower() == 'gemini':
|
||
# 原生Gemini API测试
|
||
try:
|
||
# 构建请求数据
|
||
request_data = {
|
||
"contents": [{
|
||
"parts": [{"text": "直接回复我文本'当前网络可用'"}]
|
||
}]
|
||
}
|
||
|
||
# 构建请求URL
|
||
api_base_url = base_url
|
||
url = f"{api_base_url}/models/{model_name}:generateContent"
|
||
# 发送请求
|
||
response = requests.post(
|
||
url,
|
||
json=request_data,
|
||
headers={
|
||
"x-goog-api-key": api_key,
|
||
"Content-Type": "application/json"
|
||
},
|
||
timeout=10
|
||
)
|
||
|
||
if response.status_code == 200:
|
||
return True, tr("原生Gemini模型连接成功")
|
||
else:
|
||
return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}"
|
||
except Exception as e:
|
||
return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}"
|
||
elif provider.lower() == 'gemini(openai)':
|
||
# OpenAI兼容的Gemini代理测试
|
||
try:
|
||
headers = {
|
||
"Authorization": f"Bearer {api_key}",
|
||
"Content-Type": "application/json"
|
||
}
|
||
|
||
test_url = f"{base_url.rstrip('/')}/chat/completions"
|
||
test_data = {
|
||
"model": model_name,
|
||
"messages": [
|
||
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
|
||
],
|
||
"stream": False
|
||
}
|
||
|
||
response = requests.post(test_url, headers=headers, json=test_data, timeout=10)
|
||
if response.status_code == 200:
|
||
return True, tr("OpenAI兼容Gemini代理连接成功")
|
||
else:
|
||
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}"
|
||
except Exception as e:
|
||
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: {str(e)}"
|
||
else:
|
||
from openai import OpenAI
|
||
try:
|
||
client = OpenAI(
|
||
api_key=api_key,
|
||
base_url=base_url,
|
||
)
|
||
|
||
response = client.chat.completions.create(
|
||
model=model_name,
|
||
messages=[
|
||
{
|
||
"role": "system",
|
||
"content": [{"type": "text", "text": "You are a helpful assistant."}],
|
||
},
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg"
|
||
},
|
||
},
|
||
{"type": "text", "text": "回复我网络可用即可"},
|
||
],
|
||
},
|
||
],
|
||
)
|
||
if response and response.choices:
|
||
return True, tr("QwenVL model is available")
|
||
else:
|
||
return False, tr("QwenVL model returned invalid response")
|
||
|
||
except Exception as e:
|
||
# logger.debug(api_key)
|
||
# logger.debug(base_url)
|
||
# logger.debug(model_name)
|
||
return False, f"{tr('QwenVL model is not available')}: {str(e)}"
|
||
|
||
|
||
|
||
|
||
def test_litellm_vision_model(api_key: str, base_url: str, model_name: str, tr) -> tuple[bool, str]:
|
||
"""测试 LiteLLM 视觉模型连接
|
||
|
||
Args:
|
||
api_key: API 密钥
|
||
base_url: 基础 URL(可选)
|
||
model_name: 模型名称(LiteLLM 格式:provider/model)
|
||
tr: 翻译函数
|
||
|
||
Returns:
|
||
(连接是否成功, 测试结果消息)
|
||
"""
|
||
try:
|
||
import litellm
|
||
import os
|
||
import base64
|
||
import io
|
||
from PIL import Image
|
||
|
||
logger.debug(f"LiteLLM 视觉模型连通性测试: model={model_name}, api_key={api_key[:10]}..., base_url={base_url}")
|
||
|
||
# 提取 provider 名称
|
||
provider = model_name.split("/")[0] if "/" in model_name else "unknown"
|
||
|
||
# 设置 API key 到环境变量
|
||
env_key_mapping = {
|
||
"gemini": "GEMINI_API_KEY",
|
||
"google": "GEMINI_API_KEY",
|
||
"openai": "OPENAI_API_KEY",
|
||
"qwen": "QWEN_API_KEY",
|
||
"dashscope": "DASHSCOPE_API_KEY",
|
||
"siliconflow": "SILICONFLOW_API_KEY",
|
||
}
|
||
env_var = env_key_mapping.get(provider.lower(), f"{provider.upper()}_API_KEY")
|
||
old_key = os.environ.get(env_var)
|
||
os.environ[env_var] = api_key
|
||
|
||
# SiliconFlow 特殊处理:使用 OpenAI 兼容模式
|
||
test_model_name = model_name
|
||
if provider.lower() == "siliconflow":
|
||
# 替换 provider 为 openai
|
||
if "/" in model_name:
|
||
test_model_name = f"openai/{model_name.split('/', 1)[1]}"
|
||
else:
|
||
test_model_name = f"openai/{model_name}"
|
||
|
||
# 确保设置了 base_url
|
||
if not base_url:
|
||
base_url = "https://api.siliconflow.cn/v1"
|
||
|
||
# 设置 OPENAI_API_KEY (SiliconFlow 使用 OpenAI 协议)
|
||
os.environ["OPENAI_API_KEY"] = api_key
|
||
os.environ["OPENAI_API_BASE"] = base_url
|
||
|
||
try:
|
||
# 创建测试图片(64x64 白色像素,避免某些模型对极小图片的限制)
|
||
test_image = Image.new('RGB', (64, 64), color='white')
|
||
img_buffer = io.BytesIO()
|
||
test_image.save(img_buffer, format='JPEG')
|
||
img_bytes = img_buffer.getvalue()
|
||
base64_image = base64.b64encode(img_bytes).decode('utf-8')
|
||
|
||
# 构建测试请求
|
||
messages = [{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "text", "text": "请直接回复'连接成功'"},
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": f"data:image/jpeg;base64,{base64_image}"
|
||
}
|
||
}
|
||
]
|
||
}]
|
||
|
||
# 准备参数
|
||
completion_kwargs = {
|
||
"model": test_model_name,
|
||
"messages": messages,
|
||
"temperature": 0.1,
|
||
"max_tokens": 50
|
||
}
|
||
|
||
if base_url:
|
||
completion_kwargs["api_base"] = base_url
|
||
|
||
# 调用 LiteLLM(同步调用用于测试)
|
||
response = litellm.completion(**completion_kwargs)
|
||
|
||
if response and response.choices and len(response.choices) > 0:
|
||
return True, f"LiteLLM 视觉模型连接成功 ({model_name})"
|
||
else:
|
||
return False, f"LiteLLM 视觉模型返回空响应"
|
||
|
||
finally:
|
||
# 恢复原始环境变量
|
||
if old_key:
|
||
os.environ[env_var] = old_key
|
||
else:
|
||
os.environ.pop(env_var, None)
|
||
|
||
# 清理临时设置的 OpenAI 环境变量
|
||
if provider.lower() == "siliconflow":
|
||
os.environ.pop("OPENAI_API_KEY", None)
|
||
os.environ.pop("OPENAI_API_BASE", None)
|
||
|
||
except Exception as e:
|
||
error_msg = str(e)
|
||
logger.error(f"LiteLLM 视觉模型测试失败: {error_msg}")
|
||
|
||
# 提供更友好的错误信息
|
||
if "authentication" in error_msg.lower() or "api_key" in error_msg.lower():
|
||
return False, f"认证失败,请检查 API Key 是否正确"
|
||
elif "not found" in error_msg.lower() or "404" in error_msg:
|
||
return False, f"模型不存在,请检查模型名称是否正确"
|
||
elif "rate limit" in error_msg.lower():
|
||
return False, f"超出速率限制,请稍后重试"
|
||
else:
|
||
return False, f"连接失败: {error_msg}"
|
||
|
||
|
||
def test_litellm_text_model(api_key: str, base_url: str, model_name: str, tr) -> tuple[bool, str]:
|
||
"""测试 LiteLLM 文本模型连接
|
||
|
||
Args:
|
||
api_key: API 密钥
|
||
base_url: 基础 URL(可选)
|
||
model_name: 模型名称(LiteLLM 格式:provider/model)
|
||
tr: 翻译函数
|
||
|
||
Returns:
|
||
(连接是否成功, 测试结果消息)
|
||
"""
|
||
try:
|
||
import litellm
|
||
import os
|
||
|
||
logger.debug(f"LiteLLM 文本模型连通性测试: model={model_name}, api_key={api_key[:10]}..., base_url={base_url}")
|
||
|
||
# 提取 provider 名称
|
||
provider = model_name.split("/")[0] if "/" in model_name else "unknown"
|
||
|
||
# 设置 API key 到环境变量
|
||
env_key_mapping = {
|
||
"gemini": "GEMINI_API_KEY",
|
||
"google": "GEMINI_API_KEY",
|
||
"openai": "OPENAI_API_KEY",
|
||
"qwen": "QWEN_API_KEY",
|
||
"dashscope": "DASHSCOPE_API_KEY",
|
||
"siliconflow": "SILICONFLOW_API_KEY",
|
||
"deepseek": "DEEPSEEK_API_KEY",
|
||
"moonshot": "MOONSHOT_API_KEY",
|
||
}
|
||
env_var = env_key_mapping.get(provider.lower(), f"{provider.upper()}_API_KEY")
|
||
old_key = os.environ.get(env_var)
|
||
os.environ[env_var] = api_key
|
||
|
||
# SiliconFlow 特殊处理:使用 OpenAI 兼容模式
|
||
test_model_name = model_name
|
||
if provider.lower() == "siliconflow":
|
||
# 替换 provider 为 openai
|
||
if "/" in model_name:
|
||
test_model_name = f"openai/{model_name.split('/', 1)[1]}"
|
||
else:
|
||
test_model_name = f"openai/{model_name}"
|
||
|
||
# 确保设置了 base_url
|
||
if not base_url:
|
||
base_url = "https://api.siliconflow.cn/v1"
|
||
|
||
# 设置 OPENAI_API_KEY (SiliconFlow 使用 OpenAI 协议)
|
||
os.environ["OPENAI_API_KEY"] = api_key
|
||
os.environ["OPENAI_API_BASE"] = base_url
|
||
|
||
try:
|
||
# 构建测试请求
|
||
messages = [
|
||
{"role": "user", "content": "请直接回复'连接成功'"}
|
||
]
|
||
|
||
# 准备参数
|
||
completion_kwargs = {
|
||
"model": test_model_name,
|
||
"messages": messages,
|
||
"temperature": 0.1,
|
||
"max_tokens": 20
|
||
}
|
||
|
||
if base_url:
|
||
completion_kwargs["api_base"] = base_url
|
||
|
||
# 调用 LiteLLM(同步调用用于测试)
|
||
response = litellm.completion(**completion_kwargs)
|
||
|
||
if response and response.choices and len(response.choices) > 0:
|
||
return True, f"LiteLLM 文本模型连接成功 ({model_name})"
|
||
else:
|
||
return False, f"LiteLLM 文本模型返回空响应"
|
||
|
||
finally:
|
||
# 恢复原始环境变量
|
||
if old_key:
|
||
os.environ[env_var] = old_key
|
||
else:
|
||
os.environ.pop(env_var, None)
|
||
|
||
# 清理临时设置的 OpenAI 环境变量
|
||
if provider.lower() == "siliconflow":
|
||
os.environ.pop("OPENAI_API_KEY", None)
|
||
os.environ.pop("OPENAI_API_BASE", None)
|
||
|
||
except Exception as e:
|
||
error_msg = str(e)
|
||
logger.error(f"LiteLLM 文本模型测试失败: {error_msg}")
|
||
|
||
# 提供更友好的错误信息
|
||
if "authentication" in error_msg.lower() or "api_key" in error_msg.lower():
|
||
return False, f"认证失败,请检查 API Key 是否正确"
|
||
elif "not found" in error_msg.lower() or "404" in error_msg:
|
||
return False, f"模型不存在,请检查模型名称是否正确"
|
||
elif "rate limit" in error_msg.lower():
|
||
return False, f"超出速率限制,请稍后重试"
|
||
else:
|
||
return False, f"连接失败: {error_msg}"
|
||
|
||
def render_vision_llm_settings(tr):
|
||
"""渲染视频分析模型设置(LiteLLM 统一配置)"""
|
||
st.subheader(tr("Vision Model Settings"))
|
||
|
||
# 固定使用 LiteLLM 提供商
|
||
config.app["vision_llm_provider"] = "litellm"
|
||
|
||
# 获取已保存的 LiteLLM 配置
|
||
full_vision_model_name = config.app.get("vision_litellm_model_name", "gemini/gemini-2.0-flash-lite")
|
||
vision_api_key = config.app.get("vision_litellm_api_key", "")
|
||
vision_base_url = config.app.get("vision_litellm_base_url", "")
|
||
|
||
# 解析 provider 和 model
|
||
default_provider = "gemini"
|
||
default_model = "gemini-2.0-flash-lite"
|
||
|
||
if "/" in full_vision_model_name:
|
||
parts = full_vision_model_name.split("/", 1)
|
||
current_provider = parts[0]
|
||
current_model = parts[1]
|
||
else:
|
||
current_provider = default_provider
|
||
current_model = full_vision_model_name
|
||
|
||
# 定义支持的 provider 列表
|
||
LITELLM_PROVIDERS = [
|
||
"openai", "gemini", "deepseek", "qwen", "siliconflow", "moonshot",
|
||
"anthropic", "azure", "ollama", "vertex_ai", "mistral", "codestral",
|
||
"volcengine", "groq", "cohere", "together_ai", "fireworks_ai",
|
||
"openrouter", "replicate", "huggingface", "xai", "deepgram", "vllm",
|
||
"bedrock", "cloudflare"
|
||
]
|
||
|
||
# 如果当前 provider 不在列表中,添加到列表头部
|
||
if current_provider not in LITELLM_PROVIDERS:
|
||
LITELLM_PROVIDERS.insert(0, current_provider)
|
||
|
||
# 渲染配置输入框
|
||
col1, col2 = st.columns([1, 2])
|
||
with col1:
|
||
selected_provider = st.selectbox(
|
||
tr("Vision Model Provider"),
|
||
options=LITELLM_PROVIDERS,
|
||
index=LITELLM_PROVIDERS.index(current_provider) if current_provider in LITELLM_PROVIDERS else 0,
|
||
key="vision_provider_select"
|
||
)
|
||
|
||
with col2:
|
||
model_name_input = st.text_input(
|
||
tr("Vision Model Name"),
|
||
value=current_model,
|
||
help="输入模型名称(不包含 provider 前缀)\n\n"
|
||
"常用示例:\n"
|
||
"• gemini-2.0-flash-lite\n"
|
||
"• gpt-4o\n"
|
||
"• qwen-vl-max\n"
|
||
"• Qwen/Qwen2.5-VL-32B-Instruct (SiliconFlow)\n\n"
|
||
"支持 100+ providers,详见: https://docs.litellm.ai/docs/providers",
|
||
key="vision_model_input"
|
||
)
|
||
|
||
# 组合完整的模型名称
|
||
st_vision_model_name = f"{selected_provider}/{model_name_input}" if selected_provider and model_name_input else ""
|
||
|
||
st_vision_api_key = st.text_input(
|
||
tr("Vision API Key"),
|
||
value=vision_api_key,
|
||
type="password",
|
||
help="对应 provider 的 API 密钥\n\n"
|
||
"获取地址:\n"
|
||
"• Gemini: https://makersuite.google.com/app/apikey\n"
|
||
"• OpenAI: https://platform.openai.com/api-keys\n"
|
||
"• Qwen: https://bailian.console.aliyun.com/\n"
|
||
"• SiliconFlow: https://cloud.siliconflow.cn/account/ak"
|
||
)
|
||
|
||
st_vision_base_url = st.text_input(
|
||
tr("Vision Base URL"),
|
||
value=vision_base_url,
|
||
help="自定义 API 端点(可选)找不到供应商才需要填自定义 url"
|
||
)
|
||
|
||
# 添加测试连接按钮
|
||
if st.button(tr("Test Connection"), key="test_vision_connection"):
|
||
test_errors = []
|
||
if not st_vision_api_key:
|
||
test_errors.append("请先输入 API 密钥")
|
||
if not model_name_input:
|
||
test_errors.append("请先输入模型名称")
|
||
|
||
if test_errors:
|
||
for error in test_errors:
|
||
st.error(error)
|
||
else:
|
||
with st.spinner(tr("Testing connection...")):
|
||
try:
|
||
success, message = test_litellm_vision_model(
|
||
api_key=st_vision_api_key,
|
||
base_url=st_vision_base_url,
|
||
model_name=st_vision_model_name,
|
||
tr=tr
|
||
)
|
||
|
||
if success:
|
||
st.success(message)
|
||
else:
|
||
st.error(message)
|
||
except Exception as e:
|
||
st.error(f"测试连接时发生错误: {str(e)}")
|
||
logger.error(f"LiteLLM 视频分析模型连接测试失败: {str(e)}")
|
||
|
||
# 验证和保存配置
|
||
validation_errors = []
|
||
config_changed = False
|
||
|
||
# 验证模型名称
|
||
if st_vision_model_name:
|
||
# 这里的验证逻辑可能需要微调,因为我们现在是自动组合的
|
||
is_valid, error_msg = validate_litellm_model_name(st_vision_model_name, "视频分析")
|
||
if is_valid:
|
||
config.app["vision_litellm_model_name"] = st_vision_model_name
|
||
st.session_state["vision_litellm_model_name"] = st_vision_model_name
|
||
config_changed = True
|
||
else:
|
||
validation_errors.append(error_msg)
|
||
|
||
# 验证 API 密钥
|
||
if st_vision_api_key:
|
||
is_valid, error_msg = validate_api_key(st_vision_api_key, "视频分析")
|
||
if is_valid:
|
||
config.app["vision_litellm_api_key"] = st_vision_api_key
|
||
st.session_state["vision_litellm_api_key"] = st_vision_api_key
|
||
config_changed = True
|
||
else:
|
||
validation_errors.append(error_msg)
|
||
|
||
# 验证 Base URL(可选)
|
||
if st_vision_base_url:
|
||
is_valid, error_msg = validate_base_url(st_vision_base_url, "视频分析")
|
||
if is_valid:
|
||
config.app["vision_litellm_base_url"] = st_vision_base_url
|
||
st.session_state["vision_litellm_base_url"] = st_vision_base_url
|
||
config_changed = True
|
||
else:
|
||
validation_errors.append(error_msg)
|
||
|
||
# 显示验证错误
|
||
show_config_validation_errors(validation_errors)
|
||
|
||
# 保存配置
|
||
if config_changed and not validation_errors:
|
||
try:
|
||
config.save_config()
|
||
# 清除缓存,确保下次使用新配置
|
||
UnifiedLLMService.clear_cache()
|
||
if st_vision_api_key or st_vision_base_url or st_vision_model_name:
|
||
st.success(f"视频分析模型配置已保存(LiteLLM)")
|
||
except Exception as e:
|
||
st.error(f"保存配置失败: {str(e)}")
|
||
logger.error(f"保存视频分析配置失败: {str(e)}")
|
||
|
||
|
||
def test_text_model_connection(api_key, base_url, model_name, provider, tr):
|
||
"""测试文本模型连接
|
||
|
||
Args:
|
||
api_key: API密钥
|
||
base_url: 基础URL
|
||
model_name: 模型名称
|
||
provider: 提供商名称
|
||
|
||
Returns:
|
||
bool: 连接是否成功
|
||
str: 测试结果消息
|
||
"""
|
||
import requests
|
||
logger.debug(f"大模型连通性测试: {base_url} 模型: {model_name} apikey: {api_key}")
|
||
|
||
try:
|
||
# 构建统一的测试请求(遵循OpenAI格式)
|
||
headers = {
|
||
"Authorization": f"Bearer {api_key}",
|
||
"Content-Type": "application/json"
|
||
}
|
||
|
||
# 特殊处理Gemini
|
||
if provider.lower() == 'gemini':
|
||
# 原生Gemini API测试
|
||
try:
|
||
# 构建请求数据
|
||
request_data = {
|
||
"contents": [{
|
||
"parts": [{"text": "直接回复我文本'当前网络可用'"}]
|
||
}]
|
||
}
|
||
|
||
# 构建请求URL
|
||
api_base_url = base_url
|
||
url = f"{api_base_url}/models/{model_name}:generateContent"
|
||
|
||
# 发送请求
|
||
response = requests.post(
|
||
url,
|
||
json=request_data,
|
||
headers={
|
||
"x-goog-api-key": api_key,
|
||
"Content-Type": "application/json"
|
||
},
|
||
timeout=10
|
||
)
|
||
|
||
if response.status_code == 200:
|
||
return True, tr("原生Gemini模型连接成功")
|
||
else:
|
||
return False, f"{tr('原生Gemini模型连接失败')}: HTTP {response.status_code}"
|
||
except Exception as e:
|
||
return False, f"{tr('原生Gemini模型连接失败')}: {str(e)}"
|
||
|
||
elif provider.lower() == 'gemini(openai)':
|
||
# OpenAI兼容的Gemini代理测试
|
||
test_url = f"{base_url.rstrip('/')}/chat/completions"
|
||
test_data = {
|
||
"model": model_name,
|
||
"messages": [
|
||
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
|
||
],
|
||
"stream": False
|
||
}
|
||
|
||
response = requests.post(test_url, headers=headers, json=test_data, timeout=10)
|
||
if response.status_code == 200:
|
||
return True, tr("OpenAI兼容Gemini代理连接成功")
|
||
else:
|
||
return False, f"{tr('OpenAI兼容Gemini代理连接失败')}: HTTP {response.status_code}"
|
||
else:
|
||
test_url = f"{base_url.rstrip('/')}/chat/completions"
|
||
|
||
# 构建测试消息
|
||
test_data = {
|
||
"model": model_name,
|
||
"messages": [
|
||
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
|
||
],
|
||
"stream": False
|
||
}
|
||
|
||
# 发送测试请求
|
||
response = requests.post(
|
||
test_url,
|
||
headers=headers,
|
||
json=test_data,
|
||
)
|
||
# logger.debug(model_name)
|
||
# logger.debug(api_key)
|
||
# logger.debug(test_url)
|
||
if response.status_code == 200:
|
||
return True, tr("Text model is available")
|
||
else:
|
||
return False, f"{tr('Text model is not available')}: HTTP {response.status_code}"
|
||
|
||
except Exception as e:
|
||
logger.error(traceback.format_exc())
|
||
return False, f"{tr('Connection failed')}: {str(e)}"
|
||
|
||
|
||
def render_text_llm_settings(tr):
|
||
"""渲染文案生成模型设置(LiteLLM 统一配置)"""
|
||
st.subheader(tr("Text Generation Model Settings"))
|
||
|
||
# 固定使用 LiteLLM 提供商
|
||
config.app["text_llm_provider"] = "litellm"
|
||
|
||
# 获取已保存的 LiteLLM 配置
|
||
full_text_model_name = config.app.get("text_litellm_model_name", "deepseek/deepseek-chat")
|
||
text_api_key = config.app.get("text_litellm_api_key", "")
|
||
text_base_url = config.app.get("text_litellm_base_url", "")
|
||
|
||
# 解析 provider 和 model
|
||
default_provider = "deepseek"
|
||
default_model = "deepseek-chat"
|
||
|
||
if "/" in full_text_model_name:
|
||
parts = full_text_model_name.split("/", 1)
|
||
current_provider = parts[0]
|
||
current_model = parts[1]
|
||
else:
|
||
current_provider = default_provider
|
||
current_model = full_text_model_name
|
||
|
||
# 定义支持的 provider 列表
|
||
LITELLM_PROVIDERS = [
|
||
"openai", "gemini", "deepseek", "qwen", "siliconflow", "moonshot",
|
||
"anthropic", "azure", "ollama", "vertex_ai", "mistral", "codestral",
|
||
"volcengine", "groq", "cohere", "together_ai", "fireworks_ai",
|
||
"openrouter", "replicate", "huggingface", "xai", "deepgram", "vllm",
|
||
"bedrock", "cloudflare"
|
||
]
|
||
|
||
# 如果当前 provider 不在列表中,添加到列表头部
|
||
if current_provider not in LITELLM_PROVIDERS:
|
||
LITELLM_PROVIDERS.insert(0, current_provider)
|
||
|
||
# 渲染配置输入框
|
||
col1, col2 = st.columns([1, 2])
|
||
with col1:
|
||
selected_provider = st.selectbox(
|
||
tr("Text Model Provider"),
|
||
options=LITELLM_PROVIDERS,
|
||
index=LITELLM_PROVIDERS.index(current_provider) if current_provider in LITELLM_PROVIDERS else 0,
|
||
key="text_provider_select"
|
||
)
|
||
|
||
with col2:
|
||
model_name_input = st.text_input(
|
||
tr("Text Model Name"),
|
||
value=current_model,
|
||
help="输入模型名称(不包含 provider 前缀)\n\n"
|
||
"常用示例:\n"
|
||
"• deepseek-chat\n"
|
||
"• gpt-4o\n"
|
||
"• gemini-2.0-flash\n"
|
||
"• deepseek-ai/DeepSeek-R1 (SiliconFlow)\n\n"
|
||
"支持 100+ providers,详见: https://docs.litellm.ai/docs/providers",
|
||
key="text_model_input"
|
||
)
|
||
|
||
# 组合完整的模型名称
|
||
st_text_model_name = f"{selected_provider}/{model_name_input}" if selected_provider and model_name_input else ""
|
||
|
||
st_text_api_key = st.text_input(
|
||
tr("Text API Key"),
|
||
value=text_api_key,
|
||
type="password",
|
||
help="对应 provider 的 API 密钥\n\n"
|
||
"获取地址:\n"
|
||
"• DeepSeek: https://platform.deepseek.com/api_keys\n"
|
||
"• Gemini: https://makersuite.google.com/app/apikey\n"
|
||
"• OpenAI: https://platform.openai.com/api-keys\n"
|
||
"• Qwen: https://bailian.console.aliyun.com/\n"
|
||
"• SiliconFlow: https://cloud.siliconflow.cn/account/ak\n"
|
||
"• Moonshot: https://platform.moonshot.cn/console/api-keys"
|
||
)
|
||
|
||
st_text_base_url = st.text_input(
|
||
tr("Text Base URL"),
|
||
value=text_base_url,
|
||
help="自定义 API 端点(可选)找不到供应商才需要填自定义 url"
|
||
)
|
||
|
||
# 添加测试连接按钮
|
||
if st.button(tr("Test Connection"), key="test_text_connection"):
|
||
test_errors = []
|
||
if not st_text_api_key:
|
||
test_errors.append("请先输入 API 密钥")
|
||
if not model_name_input:
|
||
test_errors.append("请先输入模型名称")
|
||
|
||
if test_errors:
|
||
for error in test_errors:
|
||
st.error(error)
|
||
else:
|
||
with st.spinner(tr("Testing connection...")):
|
||
try:
|
||
success, message = test_litellm_text_model(
|
||
api_key=st_text_api_key,
|
||
base_url=st_text_base_url,
|
||
model_name=st_text_model_name,
|
||
tr=tr
|
||
)
|
||
|
||
if success:
|
||
st.success(message)
|
||
else:
|
||
st.error(message)
|
||
except Exception as e:
|
||
st.error(f"测试连接时发生错误: {str(e)}")
|
||
logger.error(f"LiteLLM 文案生成模型连接测试失败: {str(e)}")
|
||
|
||
# 验证和保存配置
|
||
text_validation_errors = []
|
||
text_config_changed = False
|
||
|
||
# 验证模型名称
|
||
if st_text_model_name:
|
||
is_valid, error_msg = validate_litellm_model_name(st_text_model_name, "文案生成")
|
||
if is_valid:
|
||
config.app["text_litellm_model_name"] = st_text_model_name
|
||
st.session_state["text_litellm_model_name"] = st_text_model_name
|
||
text_config_changed = True
|
||
else:
|
||
text_validation_errors.append(error_msg)
|
||
|
||
# 验证 API 密钥
|
||
if st_text_api_key:
|
||
is_valid, error_msg = validate_api_key(st_text_api_key, "文案生成")
|
||
if is_valid:
|
||
config.app["text_litellm_api_key"] = st_text_api_key
|
||
st.session_state["text_litellm_api_key"] = st_text_api_key
|
||
text_config_changed = True
|
||
else:
|
||
text_validation_errors.append(error_msg)
|
||
|
||
# 验证 Base URL(可选)
|
||
if st_text_base_url:
|
||
is_valid, error_msg = validate_base_url(st_text_base_url, "文案生成")
|
||
if is_valid:
|
||
config.app["text_litellm_base_url"] = st_text_base_url
|
||
st.session_state["text_litellm_base_url"] = st_text_base_url
|
||
text_config_changed = True
|
||
else:
|
||
text_validation_errors.append(error_msg)
|
||
|
||
# 显示验证错误
|
||
show_config_validation_errors(text_validation_errors)
|
||
|
||
# 保存配置
|
||
if text_config_changed and not text_validation_errors:
|
||
try:
|
||
config.save_config()
|
||
# 清除缓存,确保下次使用新配置
|
||
UnifiedLLMService.clear_cache()
|
||
if st_text_api_key or st_text_base_url or st_text_model_name:
|
||
st.success(f"文案生成模型配置已保存(LiteLLM)")
|
||
except Exception as e:
|
||
st.error(f"保存配置失败: {str(e)}")
|
||
logger.error(f"保存文案生成配置失败: {str(e)}")
|
||
|
||
# # Cloudflare 特殊配置
|
||
# if text_provider == 'cloudflare':
|
||
# st_account_id = st.text_input(
|
||
# tr("Account ID"),
|
||
# value=config.app.get(f"text_{text_provider}_account_id", "")
|
||
# )
|
||
# if st_account_id:
|
||
# config.app[f"text_{text_provider}_account_id"] = st_account_id
|