import streamlit as st import os from app.config import config from app.utils import utils def render_basic_settings(tr): """渲染基础设置面板""" with st.expander(tr("Basic Settings"), expanded=False): config_panels = st.columns(3) left_config_panel = config_panels[0] middle_config_panel = config_panels[1] right_config_panel = config_panels[2] with left_config_panel: render_language_settings(tr) render_proxy_settings(tr) with middle_config_panel: render_vision_llm_settings(tr) # 视频分析模型设置 with right_config_panel: render_text_llm_settings(tr) # 文案生成模型设置 def render_language_settings(tr): st.subheader(tr("Proxy Settings")) """渲染语言设置""" system_locale = utils.get_system_locale() i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n") locales = utils.load_locales(i18n_dir) display_languages = [] selected_index = 0 for i, code in enumerate(locales.keys()): display_languages.append(f"{code} - {locales[code].get('Language')}") if code == st.session_state.get('ui_language', system_locale): selected_index = i selected_language = st.selectbox( tr("Language"), options=display_languages, index=selected_index ) if selected_language: code = selected_language.split(" - ")[0].strip() st.session_state['ui_language'] = code config.ui['language'] = code def render_proxy_settings(tr): """渲染代理设置""" proxy_url_http = config.proxy.get("http", "") or os.getenv("VPN_PROXY_URL", "") proxy_url_https = config.proxy.get("https", "") or os.getenv("VPN_PROXY_URL", "") HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http) HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https) if HTTP_PROXY: config.proxy["http"] = HTTP_PROXY os.environ["HTTP_PROXY"] = HTTP_PROXY if HTTPS_PROXY: config.proxy["https"] = HTTPS_PROXY os.environ["HTTPS_PROXY"] = HTTPS_PROXY def render_vision_llm_settings(tr): """渲染视频分析模型设置""" st.subheader(tr("Vision Model Settings")) # 视频分析模型提供商选择 vision_providers = ['Gemini', 'NarratoAPI'] saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower() saved_provider_index = 0 for i, provider in enumerate(vision_providers): if provider.lower() == saved_vision_provider: saved_provider_index = i break vision_provider = st.selectbox( tr("Vision Model Provider"), options=vision_providers, index=saved_provider_index ) vision_provider = vision_provider.lower() config.app["vision_llm_provider"] = vision_provider st.session_state['vision_llm_providers'] = vision_provider # 获取已保存的视觉模型配置 vision_api_key = config.app.get(f"vision_{vision_provider}_api_key", "") vision_base_url = config.app.get(f"vision_{vision_provider}_base_url", "") vision_model_name = config.app.get(f"vision_{vision_provider}_model_name", "") # 渲染视觉模型配置输入框 st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password") st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url) st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name) # 保存视觉模型配置 if st_vision_api_key: config.app[f"vision_{vision_provider}_api_key"] = st_vision_api_key st.session_state[f"vision_{vision_provider}_api_key"] = st_vision_api_key # 用于script_settings.py if st_vision_base_url: config.app[f"vision_{vision_provider}_base_url"] = st_vision_base_url st.session_state[f"vision_{vision_provider}_base_url"] = st_vision_base_url if st_vision_model_name: config.app[f"vision_{vision_provider}_model_name"] = st_vision_model_name st.session_state[f"vision_{vision_provider}_model_name"] = st_vision_model_name # NarratoAPI 特殊配置 if vision_provider == 'narratoapi': st.subheader(tr("Narrato Additional Settings")) # Narrato API 基础配置 narrato_api_key = st.text_input( tr("Narrato API Key"), value=config.app.get("narrato_api_key", ""), type="password", help="用于访问 Narrato API 的密钥" ) if narrato_api_key: config.app["narrato_api_key"] = narrato_api_key st.session_state['narrato_api_key'] = narrato_api_key narrato_api_url = st.text_input( tr("Narrato API URL"), value=config.app.get("narrato_api_url", "http://127.0.0.1:8000/api/v1/video/analyze") ) if narrato_api_url: config.app["narrato_api_url"] = narrato_api_url st.session_state['narrato_api_url'] = narrato_api_url # 视频分析模型配置 st.markdown("##### " + tr("Vision Model Settings")) narrato_vision_model = st.text_input( tr("Vision Model Name"), value=config.app.get("narrato_vision_model", "gemini-1.5-flash") ) narrato_vision_key = st.text_input( tr("Vision Model API Key"), value=config.app.get("narrato_vision_key", ""), type="password", help="用于视频分析的模型 API Key" ) if narrato_vision_model: config.app["narrato_vision_model"] = narrato_vision_model st.session_state['narrato_vision_model'] = narrato_vision_model if narrato_vision_key: config.app["narrato_vision_key"] = narrato_vision_key st.session_state['narrato_vision_key'] = narrato_vision_key # 文案生成模型配置 st.markdown("##### " + tr("Text Generation Model Settings")) narrato_llm_model = st.text_input( tr("LLM Model Name"), value=config.app.get("narrato_llm_model", "qwen-plus") ) narrato_llm_key = st.text_input( tr("LLM Model API Key"), value=config.app.get("narrato_llm_key", ""), type="password", help="用于文案生成的模型 API Key" ) if narrato_llm_model: config.app["narrato_llm_model"] = narrato_llm_model st.session_state['narrato_llm_model'] = narrato_llm_model if narrato_llm_key: config.app["narrato_llm_key"] = narrato_llm_key st.session_state['narrato_llm_key'] = narrato_llm_key # 批处理配置 narrato_batch_size = st.number_input( tr("Batch Size"), min_value=1, max_value=50, value=config.app.get("narrato_batch_size", 10), help="每批处理的图片数量" ) if narrato_batch_size: config.app["narrato_batch_size"] = narrato_batch_size st.session_state['narrato_batch_size'] = narrato_batch_size def render_text_llm_settings(tr): """渲染文案生成模型设置""" st.subheader(tr("Text Generation Model Settings")) # 文案生成模型提供商选择 text_providers = ['OpenAI', 'Qwen', 'Moonshot', 'Gemini'] saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower() saved_provider_index = 0 for i, provider in enumerate(text_providers): if provider.lower() == saved_text_provider: saved_provider_index = i break text_provider = st.selectbox( tr("Text Model Provider"), options=text_providers, index=saved_provider_index ) text_provider = text_provider.lower() config.app["text_llm_provider"] = text_provider # 获取已保存的文本模型配置 text_api_key = config.app.get(f"text_{text_provider}_api_key", "") text_base_url = config.app.get(f"text_{text_provider}_base_url", "") text_model_name = config.app.get(f"text_{text_provider}_model_name", "") # 渲染文本模型配置输入框 st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password") st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url) st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name) # 保存文本模型配置 if st_text_api_key: config.app[f"text_{text_provider}_api_key"] = st_text_api_key if st_text_base_url: config.app[f"text_{text_provider}_base_url"] = st_text_base_url if st_text_model_name: config.app[f"text_{text_provider}_model_name"] = st_text_model_name # Cloudflare 特殊配置 if text_provider == 'cloudflare': st_account_id = st.text_input( tr("Account ID"), value=config.app.get(f"text_{text_provider}_account_id", "") ) if st_account_id: config.app[f"text_{text_provider}_account_id"] = st_account_id