import streamlit as st
import os
import sys
from loguru import logger
from app.config import config
from webui.components import basic_settings, video_settings, audio_settings, subtitle_settings, script_settings, \
system_settings
# from webui.utils import cache, file_utils
from app.utils import utils
from app.utils import ffmpeg_utils
from app.models.schema import VideoClipParams, VideoAspect
# 初始化配置 - 必须是第一个 Streamlit 命令
st.set_page_config(
page_title="NarratoAI",
page_icon="📽️",
layout="wide",
initial_sidebar_state="auto",
menu_items={
"Report a bug": "https://github.com/linyqh/NarratoAI/issues",
'About': f"# Narrato:blue[AI] :sunglasses: 📽️ \n #### Version: v{config.project_version} \n "
f"自动化影视解说视频详情请移步:https://github.com/linyqh/NarratoAI"
},
)
# 设置页面样式
hide_streamlit_style = """
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def init_log():
"""初始化日志配置"""
from loguru import logger
logger.remove()
_lvl = "INFO" # 改为 INFO 级别,过滤掉 DEBUG 日志
def format_record(record):
# 简化日志格式化处理,不尝试按特定字符串过滤torch相关内容
file_path = record["file"].path
relative_path = os.path.relpath(file_path, config.root_dir)
record["file"].path = f"./{relative_path}"
record['message'] = record['message'].replace(config.root_dir, ".")
_format = '{time:%Y-%m-%d %H:%M:%S}> | ' + \
'{level}> | ' + \
'"{file.path}:{line}": {function}> ' + \
'- {message}>' + "\n"
return _format
# 添加日志过滤器
def log_filter(record):
"""过滤不必要的日志消息"""
# 过滤掉启动时的噪音日志(即使在 DEBUG 模式下也可以选择过滤)
ignore_patterns = [
"Examining the path of torch.classes raised",
"torch.cuda.is_available()",
"CUDA initialization"
]
return not any(pattern in record["message"] for pattern in ignore_patterns)
logger.add(
sys.stdout,
level=_lvl,
format=format_record,
colorize=True,
filter=log_filter
)
# 应用启动后,可以再添加更复杂的过滤器
def setup_advanced_filters():
"""在应用完全启动后设置高级过滤器"""
try:
for handler_id in logger._core.handlers:
logger.remove(handler_id)
# 重新添加带有高级过滤的处理器
def advanced_filter(record):
"""更复杂的过滤器,在应用启动后安全使用"""
ignore_messages = [
"Examining the path of torch.classes raised",
"torch.cuda.is_available()",
"CUDA initialization"
]
return not any(msg in record["message"] for msg in ignore_messages)
logger.add(
sys.stdout,
level=_lvl,
format=format_record,
colorize=True,
filter=advanced_filter
)
except Exception as e:
# 如果过滤器设置失败,确保日志仍然可用
logger.add(
sys.stdout,
level=_lvl,
format=format_record,
colorize=True
)
logger.error(f"设置高级日志过滤器失败: {e}")
# 将高级过滤器设置放到启动主逻辑后
import threading
threading.Timer(5.0, setup_advanced_filters).start()
def init_global_state():
"""初始化全局状态"""
if 'video_clip_json' not in st.session_state:
st.session_state['video_clip_json'] = []
if 'video_plot' not in st.session_state:
st.session_state['video_plot'] = ''
if 'ui_language' not in st.session_state:
st.session_state['ui_language'] = config.ui.get("language", utils.get_system_locale())
# 移除subclip_videos初始化 - 现在使用统一裁剪策略
def tr(key):
"""翻译函数"""
i18n_dir = os.path.join(os.path.dirname(__file__), "webui", "i18n")
locales = utils.load_locales(i18n_dir)
loc = locales.get(st.session_state['ui_language'], {})
return loc.get("Translation", {}).get(key, key)
def render_generate_button():
"""渲染生成按钮和处理逻辑"""
if st.button(tr("Generate Video"), use_container_width=True, type="primary"):
from app.services import task as tm
from app.services import state as sm
from app.models import const
import threading
import time
import uuid
config.save_config()
# 移除task_id检查 - 现在使用统一裁剪策略,不再需要预裁剪
# 直接检查必要的文件是否存在
if not st.session_state.get('video_clip_json_path'):
st.error(tr("脚本文件不能为空"))
return
if not st.session_state.get('video_origin_path'):
st.error(tr("视频文件不能为空"))
return
# 获取所有参数
script_params = script_settings.get_script_params()
video_params = video_settings.get_video_params()
audio_params = audio_settings.get_audio_params()
subtitle_params = subtitle_settings.get_subtitle_params()
# 合并所有参数
all_params = {
**script_params,
**video_params,
**audio_params,
**subtitle_params
}
# 创建参数对象
params = VideoClipParams(**all_params)
# 生成一个新的task_id用于本次处理
task_id = str(uuid.uuid4())
# 创建进度条
progress_bar = st.progress(0)
status_text = st.empty()
def run_task():
try:
tm.start_subclip_unified(
task_id=task_id,
params=params
)
except Exception as e:
logger.error(f"任务执行失败: {e}")
sm.state.update_task(task_id, state=const.TASK_STATE_FAILED, message=str(e))
# 在新线程中启动任务
thread = threading.Thread(target=run_task)
thread.start()
# 轮询任务状态
while True:
task = sm.state.get_task(task_id)
if task:
progress = task.get("progress", 0)
state = task.get("state")
# 更新进度条
progress_bar.progress(progress / 100)
status_text.text(f"Processing... {progress}%")
if state == const.TASK_STATE_COMPLETE:
status_text.text(tr("视频生成完成"))
progress_bar.progress(1.0)
# 显示结果
video_files = task.get("videos", [])
try:
if video_files:
player_cols = st.columns(len(video_files) * 2 + 1)
for i, url in enumerate(video_files):
player_cols[i * 2 + 1].video(url)
except Exception as e:
logger.error(f"播放视频失败: {e}")
st.success(tr("视频生成完成"))
break
elif state == const.TASK_STATE_FAILED:
st.error(f"任务失败: {task.get('message', 'Unknown error')}")
break
time.sleep(0.5)
def main():
"""主函数"""
init_log()
init_global_state()
# ===== 显式注册 LLM 提供商(最佳实践)=====
# 在应用启动时立即注册,确保所有 LLM 功能可用
if 'llm_providers_registered' not in st.session_state:
try:
from app.services.llm.providers import register_all_providers
register_all_providers()
st.session_state['llm_providers_registered'] = True
logger.info("✅ LLM 提供商注册成功")
except Exception as e:
logger.error(f"❌ LLM 提供商注册失败: {str(e)}")
import traceback
logger.error(traceback.format_exc())
st.error(f"⚠️ LLM 初始化失败: {str(e)}\n\n请检查配置文件和依赖是否正确安装。")
# 不抛出异常,允许应用继续运行(但 LLM 功能不可用)
# 检测FFmpeg硬件加速,但只打印一次日志(使用 session_state 持久化)
if 'hwaccel_logged' not in st.session_state:
st.session_state['hwaccel_logged'] = False
hwaccel_info = ffmpeg_utils.detect_hardware_acceleration()
if not st.session_state['hwaccel_logged']:
if hwaccel_info["available"]:
logger.info(f"FFmpeg硬件加速检测结果: 可用 | 类型: {hwaccel_info['type']} | 编码器: {hwaccel_info['encoder']} | 独立显卡: {hwaccel_info['is_dedicated_gpu']}")
else:
logger.warning(f"FFmpeg硬件加速不可用: {hwaccel_info['message']}, 将使用CPU软件编码")
st.session_state['hwaccel_logged'] = True
# 仅初始化基本资源,避免过早地加载依赖PyTorch的资源
# 检查是否能分解utils.init_resources()为基本资源和高级资源(如依赖PyTorch的资源)
try:
utils.init_resources()
except Exception as e:
logger.warning(f"资源初始化时出现警告: {e}")
st.title(f"Narrato:blue[AI]:sunglasses: 📽️")
st.write(tr("Get Help"))
# 首先渲染不依赖PyTorch的UI部分
# 渲染基础设置面板
basic_settings.render_basic_settings(tr)
# 渲染主面板
panel = st.columns(3)
with panel[0]:
script_settings.render_script_panel(tr)
with panel[1]:
audio_settings.render_audio_panel(tr)
with panel[2]:
video_settings.render_video_panel(tr)
subtitle_settings.render_subtitle_panel(tr)
# 放到最后渲染可能使用PyTorch的部分
# 渲染系统设置面板
with panel[2]:
system_settings.render_system_panel(tr)
# 放到最后渲染生成按钮和处理逻辑
render_generate_button()
if __name__ == "__main__":
main()