import math import json import os.path import re import traceback from os import path from loguru import logger from app.config import config from app.config.audio_config import AudioConfig, get_recommended_volumes_for_content from app.models import const from app.models.schema import VideoClipParams from app.services import (voice, audio_merger, subtitle_merger, clip_video, merger_video, update_script, generate_video) from app.services import state as sm from app.utils import utils def start_subclip(task_id: str, params: VideoClipParams, subclip_path_videos: dict = None): """ 后台任务(统一视频裁剪处理)- 优化版本 实施基于OST类型的统一视频裁剪策略,消除双重裁剪问题: - OST=0: 根据TTS音频时长动态裁剪,移除原声 - OST=1: 严格按照脚本timestamp精确裁剪,保持原声 - OST=2: 根据TTS音频时长动态裁剪,保持原声 Args: task_id: 任务ID params: 视频参数 subclip_path_videos: 视频片段路径(可选,仅作为备用方案) """ global merged_audio_path, merged_subtitle_path logger.info(f"\n\n## 开始任务: {task_id}") sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=0) """ 1. 加载剪辑脚本 """ logger.info("\n\n## 1. 加载视频脚本") video_script_path = path.join(params.video_clip_json_path) if path.exists(video_script_path): try: with open(video_script_path, "r", encoding="utf-8") as f: list_script = json.load(f) video_list = [i['narration'] for i in list_script] video_ost = [i['OST'] for i in list_script] time_list = [i['timestamp'] for i in list_script] video_script = " ".join(video_list) logger.debug(f"解说完整脚本: \n{video_script}") logger.debug(f"解说 OST 列表: \n{video_ost}") logger.debug(f"解说时间戳列表: \n{time_list}") except Exception as e: logger.error(f"无法读取视频json脚本,请检查脚本格式是否正确") raise ValueError("无法读取视频json脚本,请检查脚本格式是否正确") else: logger.error(f"video_script_path: {video_script_path} \n\n", traceback.format_exc()) raise ValueError("解说脚本不存在!请检查配置是否正确。") """ 2. 使用 TTS 生成音频素材 """ logger.info("\n\n## 2. 根据OST设置生成音频列表") # 只为OST=0 or 2的判断生成音频, OST=0 仅保留解说 OST=2 保留解说和原声 tts_segments = [ segment for segment in list_script if segment['OST'] in [0, 2] ] logger.debug(f"需要生成TTS的片段数: {len(tts_segments)}") tts_results = voice.tts_multiple( task_id=task_id, list_script=tts_segments, # 只传入需要TTS的片段 tts_engine=params.tts_engine, voice_name=params.voice_name, voice_rate=params.voice_rate, voice_pitch=params.voice_pitch, ) sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=20) # """ # 3. (可选) 使用 whisper 生成字幕 # """ # if merged_subtitle_path is None: # if audio_files: # merged_subtitle_path = path.join(utils.task_dir(task_id), f"subtitle.srt") # subtitle_provider = config.app.get("subtitle_provider", "").strip().lower() # logger.info(f"\n\n使用 {subtitle_provider} 生成字幕") # # subtitle.create( # audio_file=merged_audio_path, # subtitle_file=merged_subtitle_path, # ) # subtitle_lines = subtitle.file_to_subtitles(merged_subtitle_path) # if not subtitle_lines: # logger.warning(f"字幕文件无效: {merged_subtitle_path}") # # sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=40) """ 3. 统一视频裁剪 - 基于OST类型的差异化裁剪策略 """ logger.info("\n\n## 3. 统一视频裁剪(基于OST类型)") # 使用新的统一裁剪策略 video_clip_result = clip_video.clip_video_unified( video_origin_path=params.video_origin_path, script_list=list_script, tts_results=tts_results ) # 更新 list_script 中的时间戳和路径信息 tts_clip_result = {tts_result['_id']: tts_result['audio_file'] for tts_result in tts_results} subclip_clip_result = { tts_result['_id']: tts_result['subtitle_file'] for tts_result in tts_results } new_script_list = update_script.update_script_timestamps(list_script, video_clip_result, tts_clip_result, subclip_clip_result) logger.info(f"统一裁剪完成,处理了 {len(video_clip_result)} 个视频片段") sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=60) """ 4. 合并音频和字幕 """ logger.info("\n\n## 4. 合并音频和字幕") total_duration = sum([script["duration"] for script in new_script_list]) if tts_segments: try: # 合并音频文件 merged_audio_path = audio_merger.merge_audio_files( task_id=task_id, total_duration=total_duration, list_script=new_script_list ) logger.info(f"音频文件合并成功->{merged_audio_path}") # 合并字幕文件 merged_subtitle_path = subtitle_merger.merge_subtitle_files(new_script_list) if merged_subtitle_path: logger.info(f"字幕文件合并成功->{merged_subtitle_path}") else: logger.warning("没有有效的字幕内容,将生成无字幕视频") merged_subtitle_path = "" except Exception as e: logger.error(f"合并音频/字幕文件失败: {str(e)}") # 确保即使合并失败也有默认值 if 'merged_audio_path' not in locals(): merged_audio_path = "" if 'merged_subtitle_path' not in locals(): merged_subtitle_path = "" else: logger.warning("没有需要合并的音频/字幕") merged_audio_path = "" merged_subtitle_path = "" """ 5. 合并视频 """ final_video_paths = [] combined_video_paths = [] combined_video_path = path.join(utils.task_dir(task_id), f"merger.mp4") logger.info(f"\n\n## 5. 合并视频: => {combined_video_path}") # 使用统一裁剪后的视频片段 video_clips = [] for new_script in new_script_list: video_path = new_script.get('video') if video_path and os.path.exists(video_path): video_clips.append(video_path) else: logger.warning(f"片段 {new_script.get('_id')} 的视频文件不存在或未生成: {video_path}") # 如果统一裁剪失败,尝试使用备用方案(如果提供了subclip_path_videos) if subclip_path_videos and new_script.get('_id') in subclip_path_videos: backup_video = subclip_path_videos[new_script.get('_id')] if os.path.exists(backup_video): video_clips.append(backup_video) logger.info(f"使用备用视频: {backup_video}") else: logger.error(f"备用视频也不存在: {backup_video}") else: logger.error(f"无法找到片段 {new_script.get('_id')} 的视频文件") logger.info(f"准备合并 {len(video_clips)} 个视频片段") merger_video.combine_clip_videos( output_video_path=combined_video_path, video_paths=video_clips, video_ost_list=video_ost, video_aspect=params.video_aspect, threads=params.n_threads ) sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=80) """ 6. 合并字幕/BGM/配音/视频 """ output_video_path = path.join(utils.task_dir(task_id), f"combined.mp4") logger.info(f"\n\n## 6. 最后一步: 合并字幕/BGM/配音/视频 -> {output_video_path}") # bgm_path = '/Users/apple/Desktop/home/NarratoAI/resource/songs/bgm.mp3' bgm_path = utils.get_bgm_file() # 获取优化的音量配置 optimized_volumes = get_recommended_volumes_for_content('mixed') # 检查是否有OST=1的原声片段,如果有,则保持原声音量为1.0不变 has_original_audio_segments = any(segment['OST'] == 1 for segment in list_script) # 应用用户设置和优化建议的组合 # 如果用户设置了非默认值,优先使用用户设置 final_tts_volume = params.tts_volume if hasattr(params, 'tts_volume') and params.tts_volume != 1.0 else optimized_volumes['tts_volume'] # 关键修复:如果有原声片段,保持原声音量为1.0,确保与原视频音量一致 if has_original_audio_segments: final_original_volume = 1.0 # 保持原声音量不变 logger.info("检测到原声片段,原声音量设置为1.0以保持与原视频一致") else: final_original_volume = params.original_volume if hasattr(params, 'original_volume') and params.original_volume != 0.7 else optimized_volumes['original_volume'] final_bgm_volume = params.bgm_volume if hasattr(params, 'bgm_volume') and params.bgm_volume != 0.3 else optimized_volumes['bgm_volume'] logger.info(f"音量配置 - TTS: {final_tts_volume}, 原声: {final_original_volume}, BGM: {final_bgm_volume}") # 调用示例 options = { 'voice_volume': final_tts_volume, # 配音音量(优化后) 'bgm_volume': final_bgm_volume, # 背景音乐音量(优化后) 'original_audio_volume': final_original_volume, # 视频原声音量(优化后) 'keep_original_audio': True, # 是否保留原声 'subtitle_enabled': params.subtitle_enabled, # 是否启用字幕 - 修复字幕开关bug 'subtitle_font': params.font_name, # 这里使用相对字体路径,会自动在 font_dir() 目录下查找 'subtitle_font_size': params.font_size, 'subtitle_color': params.text_fore_color, 'subtitle_bg_color': None, # 直接使用None表示透明背景 'subtitle_position': params.subtitle_position, 'custom_position': params.custom_position, 'threads': params.n_threads } generate_video.merge_materials( video_path=combined_video_path, audio_path=merged_audio_path, subtitle_path=merged_subtitle_path, bgm_path=bgm_path, output_path=output_video_path, options=options ) final_video_paths.append(output_video_path) combined_video_paths.append(combined_video_path) logger.success(f"任务 {task_id} 已完成, 生成 {len(final_video_paths)} 个视频.") kwargs = { "videos": final_video_paths, "combined_videos": combined_video_paths } sm.state.update_task(task_id, state=const.TASK_STATE_COMPLETE, progress=100, **kwargs) return kwargs def start_subclip_unified(task_id: str, params: VideoClipParams): """ 统一视频裁剪处理函数 - 完全基于OST类型的新实现 这是优化后的版本,完全移除了对预裁剪视频的依赖, 实现真正的统一裁剪策略。 Args: task_id: 任务ID params: 视频参数 """ global merged_audio_path, merged_subtitle_path logger.info(f"\n\n## 开始统一视频处理任务: {task_id}") sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=0) """ 1. 加载剪辑脚本 """ logger.info("\n\n## 1. 加载视频脚本") video_script_path = path.join(params.video_clip_json_path) if path.exists(video_script_path): try: with open(video_script_path, "r", encoding="utf-8") as f: list_script = json.load(f) video_list = [i['narration'] for i in list_script] video_ost = [i['OST'] for i in list_script] time_list = [i['timestamp'] for i in list_script] video_script = " ".join(video_list) logger.debug(f"解说完整脚本: \n{video_script}") logger.debug(f"解说 OST 列表: \n{video_ost}") logger.debug(f"解说时间戳列表: \n{time_list}") except Exception as e: logger.error(f"无法读取视频json脚本,请检查脚本格式是否正确") raise ValueError("无法读取视频json脚本,请检查脚本格式是否正确") else: logger.error(f"video_script_path: {video_script_path}") raise ValueError("解说脚本不存在!请检查配置是否正确。") """ 2. 使用 TTS 生成音频素材 """ logger.info("\n\n## 2. 根据OST设置生成音频列表") # 只为OST=0 or 2的判断生成音频, OST=0 仅保留解说 OST=2 保留解说和原声 tts_segments = [ segment for segment in list_script if segment['OST'] in [0, 2] ] logger.debug(f"需要生成TTS的片段数: {len(tts_segments)}") tts_results = voice.tts_multiple( task_id=task_id, list_script=tts_segments, # 只传入需要TTS的片段 tts_engine=params.tts_engine, voice_name=params.voice_name, voice_rate=params.voice_rate, voice_pitch=params.voice_pitch, ) sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=20) """ 3. 统一视频裁剪 - 基于OST类型的差异化裁剪策略 """ logger.info("\n\n## 3. 统一视频裁剪(基于OST类型)") # 使用新的统一裁剪策略 video_clip_result = clip_video.clip_video_unified( video_origin_path=params.video_origin_path, script_list=list_script, tts_results=tts_results ) # 更新 list_script 中的时间戳和路径信息 tts_clip_result = {tts_result['_id']: tts_result['audio_file'] for tts_result in tts_results} subclip_clip_result = { tts_result['_id']: tts_result['subtitle_file'] for tts_result in tts_results } new_script_list = update_script.update_script_timestamps(list_script, video_clip_result, tts_clip_result, subclip_clip_result) logger.info(f"统一裁剪完成,处理了 {len(video_clip_result)} 个视频片段") sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=60) """ 4. 合并音频和字幕 """ logger.info("\n\n## 4. 合并音频和字幕") total_duration = sum([script["duration"] for script in new_script_list]) if tts_segments: try: # 合并音频文件 merged_audio_path = audio_merger.merge_audio_files( task_id=task_id, total_duration=total_duration, list_script=new_script_list ) logger.info(f"音频文件合并成功->{merged_audio_path}") # 合并字幕文件 merged_subtitle_path = subtitle_merger.merge_subtitle_files(new_script_list) if merged_subtitle_path: logger.info(f"字幕文件合并成功->{merged_subtitle_path}") else: logger.warning("没有有效的字幕内容,将生成无字幕视频") merged_subtitle_path = "" except Exception as e: logger.error(f"合并音频/字幕文件失败: {str(e)}") # 确保即使合并失败也有默认值 if 'merged_audio_path' not in locals(): merged_audio_path = "" if 'merged_subtitle_path' not in locals(): merged_subtitle_path = "" else: logger.warning("没有需要合并的音频/字幕") merged_audio_path = "" merged_subtitle_path = "" """ 5. 合并视频 """ final_video_paths = [] combined_video_paths = [] combined_video_path = path.join(utils.task_dir(task_id), f"merger.mp4") logger.info(f"\n\n## 5. 合并视频: => {combined_video_path}") # 使用统一裁剪后的视频片段 video_clips = [] for new_script in new_script_list: video_path = new_script.get('video') if video_path and os.path.exists(video_path): video_clips.append(video_path) else: logger.error(f"片段 {new_script.get('_id')} 的视频文件不存在: {video_path}") logger.info(f"准备合并 {len(video_clips)} 个视频片段") merger_video.combine_clip_videos( output_video_path=combined_video_path, video_paths=video_clips, video_ost_list=video_ost, video_aspect=params.video_aspect, threads=params.n_threads ) sm.state.update_task(task_id, state=const.TASK_STATE_PROCESSING, progress=80) """ 6. 合并字幕/BGM/配音/视频 """ output_video_path = path.join(utils.task_dir(task_id), f"combined.mp4") logger.info(f"\n\n## 6. 最后一步: 合并字幕/BGM/配音/视频 -> {output_video_path}") bgm_path = utils.get_bgm_file() # 获取优化的音量配置 optimized_volumes = get_recommended_volumes_for_content('mixed') # 检查是否有OST=1的原声片段,如果有,则保持原声音量为1.0不变 has_original_audio_segments = any(segment['OST'] == 1 for segment in list_script) # 应用用户设置和优化建议的组合 final_tts_volume = params.tts_volume if hasattr(params, 'tts_volume') and params.tts_volume != 1.0 else optimized_volumes['tts_volume'] # 关键修复:如果有原声片段,保持原声音量为1.0,确保与原视频音量一致 if has_original_audio_segments: final_original_volume = 1.0 # 保持原声音量不变 logger.info("检测到原声片段,原声音量设置为1.0以保持与原视频一致") else: final_original_volume = params.original_volume if hasattr(params, 'original_volume') and params.original_volume != 0.7 else optimized_volumes['original_volume'] final_bgm_volume = params.bgm_volume if hasattr(params, 'bgm_volume') and params.bgm_volume != 0.3 else optimized_volumes['bgm_volume'] logger.info(f"音量配置 - TTS: {final_tts_volume}, 原声: {final_original_volume}, BGM: {final_bgm_volume}") # 调用示例 options = { 'voice_volume': final_tts_volume, 'bgm_volume': final_bgm_volume, 'original_audio_volume': final_original_volume, 'keep_original_audio': True, 'subtitle_enabled': params.subtitle_enabled, 'subtitle_font': params.font_name, 'subtitle_font_size': params.font_size, 'subtitle_color': params.text_fore_color, 'subtitle_bg_color': None, 'subtitle_position': params.subtitle_position, 'custom_position': params.custom_position, 'threads': params.n_threads } generate_video.merge_materials( video_path=combined_video_path, audio_path=merged_audio_path, subtitle_path=merged_subtitle_path, bgm_path=bgm_path, output_path=output_video_path, options=options ) final_video_paths.append(output_video_path) combined_video_paths.append(combined_video_path) logger.success(f"统一处理任务 {task_id} 已完成, 生成 {len(final_video_paths)} 个视频.") kwargs = { "videos": final_video_paths, "combined_videos": combined_video_paths } sm.state.update_task(task_id, state=const.TASK_STATE_COMPLETE, progress=100, **kwargs) return kwargs def validate_params(video_path, audio_path, output_file, params): """ 验证输入参数 Args: video_path: 视频文件路径 audio_path: 音频文件路径(可以为空字符串) output_file: 输出文件路径 params: 视频参数 Raises: FileNotFoundError: 文件不存在时抛出 ValueError: 参数无效时抛出 """ if not video_path: raise ValueError("视频路径不能为空") if not os.path.exists(video_path): raise FileNotFoundError(f"视频文件不存在: {video_path}") # 如果提供了音频路径,则验证文件是否存在 if audio_path and not os.path.exists(audio_path): raise FileNotFoundError(f"音频文件不存在: {audio_path}") if not output_file: raise ValueError("输出文件路径不能为空") # 确保输出目录存在 output_dir = os.path.dirname(output_file) if not os.path.exists(output_dir): os.makedirs(output_dir) if not params: raise ValueError("视频参数不能为空") if __name__ == "__main__": task_id = "demo" # 提前裁剪是为了方便检查视频 subclip_path_videos = { 1: '/Users/apple/Desktop/home/NarratoAI/storage/temp/clip_video/113343d127b5a09d0bf84b68bd1b3b97/vid_00-00-05-390@00-00-57-980.mp4', 2: '/Users/apple/Desktop/home/NarratoAI/storage/temp/clip_video/113343d127b5a09d0bf84b68bd1b3b97/vid_00-00-28-900@00-00-43-700.mp4', 3: '/Users/apple/Desktop/home/NarratoAI/storage/temp/clip_video/113343d127b5a09d0bf84b68bd1b3b97/vid_00-01-17-840@00-01-27-600.mp4', 4: '/Users/apple/Desktop/home/NarratoAI/storage/temp/clip_video/113343d127b5a09d0bf84b68bd1b3b97/vid_00-02-35-460@00-02-52-380.mp4', 5: '/Users/apple/Desktop/home/NarratoAI/storage/temp/clip_video/113343d127b5a09d0bf84b68bd1b3b97/vid_00-06-59-520@00-07-29-500.mp4', } params = VideoClipParams( video_clip_json_path="/Users/apple/Desktop/home/NarratoAI/resource/scripts/2025-0507-223311.json", video_origin_path="/Users/apple/Desktop/home/NarratoAI/resource/videos/merged_video_4938.mp4", ) start_subclip(task_id, params, subclip_path_videos)