""" 使用统一LLM服务,分析字幕文件,返回剧情梗概和爆点 """ import traceback import json import asyncio from loguru import logger from .utils import load_srt # 导入新的提示词管理系统 from app.services.prompts import PromptManager # 导入统一LLM服务 from app.services.llm.unified_service import UnifiedLLMService # 导入安全的异步执行函数 from app.services.llm.migration_adapter import _run_async_safely def analyze_subtitle( srt_path: str, model_name: str, api_key: str = None, base_url: str = None, custom_clips: int = 5, provider: str = None ) -> dict: """分析字幕内容,返回完整的分析结果 Args: srt_path (str): SRT字幕文件路径 model_name (str): 大模型名称 api_key (str, optional): 大模型API密钥. Defaults to None. base_url (str, optional): 大模型API基础URL. Defaults to None. custom_clips (int): 需要提取的片段数量. Defaults to 5. provider (str, optional): LLM服务提供商. Defaults to None. Returns: dict: 包含剧情梗概和结构化的时间段分析的字典 """ try: # 加载字幕文件 subtitles = load_srt(srt_path) subtitle_content = "\n".join([f"{sub['timestamp']}\n{sub['text']}" for sub in subtitles]) # 初始化统一LLM服务 llm_service = UnifiedLLMService() # 如果没有指定provider,根据model_name推断 if not provider: if "deepseek" in model_name.lower(): provider = "deepseek" elif "gpt" in model_name.lower(): provider = "openai" elif "gemini" in model_name.lower(): provider = "gemini" else: provider = "openai" # 默认使用openai logger.info(f"使用LLM服务分析字幕,提供商: {provider}, 模型: {model_name}") # 使用新的提示词管理系统 subtitle_analysis_prompt = PromptManager.get_prompt( category="short_drama_editing", name="subtitle_analysis", parameters={ "subtitle_content": subtitle_content, "custom_clips": custom_clips } ) # 使用统一LLM服务生成文本 logger.info("开始分析字幕内容...") response = _run_async_safely( UnifiedLLMService.generate_text, prompt=subtitle_analysis_prompt, provider=provider, model=model_name, api_key=api_key, base_url=base_url, temperature=0.1, # 使用较低的温度以获得更稳定的结果 max_tokens=4000 ) # 解析JSON响应 from webui.tools.generate_short_summary import parse_and_fix_json summary_data = parse_and_fix_json(response) if not summary_data: raise Exception("无法解析LLM返回的JSON数据") logger.info(f"字幕分析完成,找到 {len(summary_data.get('plot_titles', []))} 个关键情节") print(json.dumps(summary_data, indent=4, ensure_ascii=False)) # 构建爆点标题列表 plot_titles_text = "" print(f"找到 {len(summary_data['plot_titles'])} 个片段") for i, point in enumerate(summary_data['plot_titles'], 1): plot_titles_text += f"{i}. {point}\n" # 使用新的提示词管理系统 plot_extraction_prompt = PromptManager.get_prompt( category="short_drama_editing", name="plot_extraction", parameters={ "subtitle_content": subtitle_content, "plot_summary": summary_data['summary'], "plot_titles": plot_titles_text } ) # 使用统一LLM服务进行爆点时间段分析 logger.info("开始分析爆点时间段...") response = _run_async_safely( UnifiedLLMService.generate_text, prompt=plot_extraction_prompt, provider=provider, model=model_name, api_key=api_key, base_url=base_url, temperature=0.1, max_tokens=4000 ) # 解析JSON响应 plot_data = parse_and_fix_json(response) if not plot_data: raise Exception("无法解析爆点分析的JSON数据") logger.info(f"爆点分析完成,找到 {len(plot_data.get('plot_points', []))} 个时间段") # 合并结果 result = { "summary": summary_data.get("summary", ""), "plot_titles": summary_data.get("plot_titles", []), "plot_points": plot_data.get("plot_points", []) } return result except Exception as e: logger.error(f"分析字幕时发生错误: {str(e)}") raise Exception(f"分析字幕时发生错误:{str(e)}\n{traceback.format_exc()}")