From 6f48fa256395b0d3fe7a175273fd5e9fd9d0ff20 Mon Sep 17 00:00:00 2001 From: linyq Date: Wed, 2 Jul 2025 18:35:49 +0800 Subject: [PATCH] =?UTF-8?q?feat(ffmpeg):=20=E5=AE=9E=E7=8E=B0=E6=99=BA?= =?UTF-8?q?=E8=83=BD=E7=A1=AC=E4=BB=B6=E5=8A=A0=E9=80=9F=E6=A3=80=E6=B5=8B?= =?UTF-8?q?=E5=92=8C=E7=BC=96=E7=A0=81=E5=99=A8=E9=80=89=E6=8B=A9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 添加智能硬件加速检测功能,支持多平台和渐进式降级 优化编码器选择逻辑,根据硬件类型自动选择最优编码器 增加测试视频生成和清理功能,用于硬件加速兼容性测试 支持强制软件编码模式,提供更可靠的备选方案 --- app/services/material.py | 22 +- app/services/merger_video.py | 93 +++--- app/services/video.py | 49 ++- app/utils/ffmpeg_utils.py | 562 +++++++++++++++++++++++++++++++++-- 4 files changed, 645 insertions(+), 81 deletions(-) diff --git a/app/services/material.py b/app/services/material.py index 9a3c289..d63d04c 100644 --- a/app/services/material.py +++ b/app/services/material.py @@ -402,18 +402,36 @@ def save_clip_video(timestamp: str, origin_video: str, save_dir: str = "") -> st ffmpeg_start_time = start_str.replace(',', '.') ffmpeg_end_time = end_str.replace(',', '.') - # 构建FFmpeg命令 + # 构建FFmpeg命令 - 使用新的智能编码器选择 + encoder = ffmpeg_utils.get_optimal_ffmpeg_encoder() + ffmpeg_cmd = [ "ffmpeg", "-y", *hwaccel_args, "-i", origin_video, "-ss", ffmpeg_start_time, "-to", ffmpeg_end_time, - "-c:v", "h264_videotoolbox" if hwaccel == "videotoolbox" else "libx264", + "-c:v", encoder, "-c:a", "aac", "-strict", "experimental", video_path ] + # 根据编码器类型添加特定参数 + if "nvenc" in encoder: + ffmpeg_cmd.insert(-1, "-preset") + ffmpeg_cmd.insert(-1, "medium") + elif "videotoolbox" in encoder: + ffmpeg_cmd.insert(-1, "-profile:v") + ffmpeg_cmd.insert(-1, "high") + elif "qsv" in encoder: + ffmpeg_cmd.insert(-1, "-preset") + ffmpeg_cmd.insert(-1, "medium") + elif encoder == "libx264": + ffmpeg_cmd.insert(-1, "-preset") + ffmpeg_cmd.insert(-1, "medium") + ffmpeg_cmd.insert(-1, "-crf") + ffmpeg_cmd.insert(-1, "23") + # 执行FFmpeg命令 # logger.info(f"裁剪视频片段: {timestamp} -> {ffmpeg_start_time}到{ffmpeg_end_time}") # logger.debug(f"执行命令: {' '.join(ffmpeg_cmd)}") diff --git a/app/services/merger_video.py b/app/services/merger_video.py index 6d688bf..026a47c 100644 --- a/app/services/merger_video.py +++ b/app/services/merger_video.py @@ -64,7 +64,7 @@ def get_hardware_acceleration_option() -> Optional[str]: Returns: Optional[str]: 硬件加速参数,如果不支持则返回None """ - # 使用集中式硬件加速检测 + # 使用新的硬件加速检测API return ffmpeg_utils.get_ffmpeg_hwaccel_type() @@ -178,14 +178,20 @@ def process_single_video( logger.warning(f"视频探测出错,禁用硬件加速: {str(e)}") hwaccel = None - # 添加硬件加速参数(根据前面的安全检查可能已经被禁用) + # 添加硬件加速参数(使用新的智能检测机制) if hwaccel: try: - # 使用集中式硬件加速参数 + # 使用新的硬件加速检测API hwaccel_args = ffmpeg_utils.get_ffmpeg_hwaccel_args() - command.extend(hwaccel_args) + if hwaccel_args: + command.extend(hwaccel_args) + logger.debug(f"应用硬件加速参数: {hwaccel_args}") + else: + logger.info("硬件加速不可用,将使用软件编码") + hwaccel = False # 标记为不使用硬件加速 except Exception as e: logger.warning(f"应用硬件加速参数时出错: {str(e)},将使用软件编码") + hwaccel = False # 标记为不使用硬件加速 # 重置命令,移除可能添加了一半的硬件加速参数 command = ['ffmpeg', '-y'] @@ -212,41 +218,27 @@ def process_single_video( '-r', '30', # 设置帧率为30fps ]) - # 选择编码器 - 考虑到Windows和特定硬件的兼容性 - use_software_encoder = True + # 选择编码器 - 使用新的智能编码器选择 + encoder = ffmpeg_utils.get_optimal_ffmpeg_encoder() - if hwaccel: - # 获取硬件加速类型和编码器信息 - hwaccel_type = ffmpeg_utils.get_ffmpeg_hwaccel_type() - hwaccel_encoder = ffmpeg_utils.get_ffmpeg_hwaccel_encoder() + if hwaccel and encoder != "libx264": + logger.info(f"使用硬件编码器: {encoder}") + command.extend(['-c:v', encoder]) - if hwaccel_type == 'cuda' or hwaccel_type == 'nvenc': - try: - # 检查NVENC编码器是否可用 - encoders_cmd = subprocess.run( - ["ffmpeg", "-hide_banner", "-encoders"], - stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, check=False - ) - - if "h264_nvenc" in encoders_cmd.stdout.lower(): - command.extend(['-c:v', 'h264_nvenc', '-preset', 'p4', '-profile:v', 'high']) - use_software_encoder = False - else: - logger.warning("NVENC编码器不可用,将使用软件编码") - except Exception as e: - logger.warning(f"NVENC编码器检测失败: {str(e)},将使用软件编码") - elif hwaccel_type == 'qsv': - command.extend(['-c:v', 'h264_qsv', '-preset', 'medium']) - use_software_encoder = False - elif hwaccel_type == 'videotoolbox': # macOS - command.extend(['-c:v', 'h264_videotoolbox', '-profile:v', 'high']) - use_software_encoder = False - elif hwaccel_type == 'vaapi': # Linux VA-API - command.extend(['-c:v', 'h264_vaapi', '-profile', '100']) - use_software_encoder = False - - # 如果前面的条件未能应用硬件编码器,使用软件编码 - if use_software_encoder: + # 根据编码器类型添加特定参数 + if "nvenc" in encoder: + command.extend(['-preset', 'p4', '-profile:v', 'high']) + elif "videotoolbox" in encoder: + command.extend(['-profile:v', 'high']) + elif "qsv" in encoder: + command.extend(['-preset', 'medium']) + elif "vaapi" in encoder: + command.extend(['-profile', '100']) + elif "amf" in encoder: + command.extend(['-quality', 'balanced']) + else: + command.extend(['-preset', 'medium', '-profile:v', 'high']) + else: logger.info("使用软件编码器(libx264)") command.extend(['-c:v', 'libx264', '-preset', 'medium', '-profile:v', 'high']) @@ -273,8 +265,11 @@ def process_single_video( # 如果使用硬件加速失败,尝试使用软件编码 if hwaccel: - logger.info("尝试使用软件编码作为备选方案") + logger.info("硬件加速失败,尝试使用软件编码作为备选方案") try: + # 强制使用软件编码 + ffmpeg_utils.force_software_encoding() + # 构建新的命令,使用软件编码 fallback_cmd = ['ffmpeg', '-y', '-i', input_path] @@ -302,14 +297,30 @@ def process_single_video( output_path ]) - logger.info(f"执行备选FFmpeg命令: {' '.join(fallback_cmd)}") + logger.info("执行软件编码备选方案") subprocess.run(fallback_cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info(f"使用软件编码成功处理视频: {output_path}") return output_path except subprocess.CalledProcessError as fallback_error: fallback_error_msg = fallback_error.stderr.decode() if fallback_error.stderr else str(fallback_error) - logger.error(f"备选软件编码也失败: {fallback_error_msg}") - raise RuntimeError(f"无法处理视频 {input_path}: 硬件加速和软件编码都失败") + logger.error(f"软件编码备选方案也失败: {fallback_error_msg}") + + # 尝试最基本的编码参数 + try: + logger.info("尝试最基本的编码参数") + basic_cmd = [ + 'ffmpeg', '-y', '-i', input_path, + '-c:v', 'libx264', '-preset', 'ultrafast', + '-crf', '23', '-pix_fmt', 'yuv420p', + output_path + ] + subprocess.run(basic_cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) + logger.info(f"使用基本编码参数成功处理视频: {output_path}") + return output_path + except subprocess.CalledProcessError as basic_error: + basic_error_msg = basic_error.stderr.decode() if basic_error.stderr else str(basic_error) + logger.error(f"基本编码参数也失败: {basic_error_msg}") + raise RuntimeError(f"无法处理视频 {input_path}: 所有编码方案都失败") # 如果不是硬件加速导致的问题,或者备选方案也失败了,抛出原始错误 raise RuntimeError(f"处理视频失败: {error_msg}") diff --git a/app/services/video.py b/app/services/video.py index 166cfee..d9a364f 100644 --- a/app/services/video.py +++ b/app/services/video.py @@ -366,15 +366,46 @@ def generate_video_v3( else: logger.warning("没有音频轨道需要合成") - # 导出视频 - logger.info("开始导出视频...") # 调试信息 - final_video.write_videofile( - output_path, - codec='libx264', - audio_codec='aac', - fps=video.fps - ) - logger.info(f"视频已导出到: {output_path}") # 调试信息 + # 导出视频 - 使用优化的编码器 + logger.info("开始导出视频...") + + # 获取最优编码器 + from app.utils import ffmpeg_utils + optimal_encoder = ffmpeg_utils.get_optimal_ffmpeg_encoder() + + # 根据编码器类型设置参数 + ffmpeg_params = [] + if "nvenc" in optimal_encoder: + ffmpeg_params = ['-preset', 'medium', '-profile:v', 'high'] + elif "videotoolbox" in optimal_encoder: + ffmpeg_params = ['-profile:v', 'high'] + elif "qsv" in optimal_encoder: + ffmpeg_params = ['-preset', 'medium'] + elif "vaapi" in optimal_encoder: + ffmpeg_params = ['-profile', '100'] + elif optimal_encoder == "libx264": + ffmpeg_params = ['-preset', 'medium', '-crf', '23'] + + try: + final_video.write_videofile( + output_path, + codec=optimal_encoder, + audio_codec='aac', + fps=video.fps, + ffmpeg_params=ffmpeg_params + ) + logger.info(f"视频已导出到: {output_path} (使用编码器: {optimal_encoder})") + except Exception as e: + logger.warning(f"使用 {optimal_encoder} 编码器失败: {str(e)}, 尝试软件编码") + # 降级到软件编码 + final_video.write_videofile( + output_path, + codec='libx264', + audio_codec='aac', + fps=video.fps, + ffmpeg_params=['-preset', 'medium', '-crf', '23'] + ) + logger.info(f"视频已导出到: {output_path} (使用软件编码)") # 清理资源 video.close() diff --git a/app/utils/ffmpeg_utils.py b/app/utils/ffmpeg_utils.py index 58ae83d..538af7a 100644 --- a/app/utils/ffmpeg_utils.py +++ b/app/utils/ffmpeg_utils.py @@ -1,9 +1,11 @@ """ FFmpeg 工具模块 - 提供 FFmpeg 相关的工具函数,特别是硬件加速检测 +优化多平台兼容性,支持渐进式降级和智能错误处理 """ import os import platform import subprocess +import tempfile from typing import Dict, List, Optional, Tuple, Union from loguru import logger @@ -14,9 +16,104 @@ _FFMPEG_HW_ACCEL_INFO = { "encoder": None, "hwaccel_args": [], "message": "", - "is_dedicated_gpu": False + "is_dedicated_gpu": False, + "fallback_available": False, # 是否有备用方案 + "fallback_encoder": None, # 备用编码器 + "platform": None, # 平台信息 + "gpu_vendor": None, # GPU厂商 + "tested_methods": [] # 已测试的方法 } +# 硬件加速优先级配置(按平台和GPU类型) +HWACCEL_PRIORITY = { + "windows": { + "nvidia": ["cuda", "nvenc", "d3d11va", "dxva2"], + "amd": ["d3d11va", "dxva2", "amf"], # 不再完全禁用AMD + "intel": ["qsv", "d3d11va", "dxva2"], + "unknown": ["d3d11va", "dxva2"] + }, + "darwin": { + "apple": ["videotoolbox"], + "nvidia": ["cuda", "videotoolbox"], + "amd": ["videotoolbox"], + "intel": ["videotoolbox"], + "unknown": ["videotoolbox"] + }, + "linux": { + "nvidia": ["cuda", "nvenc", "vaapi"], + "amd": ["vaapi", "amf"], + "intel": ["qsv", "vaapi"], + "unknown": ["vaapi"] + } +} + +# 编码器映射 +ENCODER_MAPPING = { + "cuda": "h264_nvenc", + "nvenc": "h264_nvenc", + "videotoolbox": "h264_videotoolbox", + "qsv": "h264_qsv", + "vaapi": "h264_vaapi", + "amf": "h264_amf", + "d3d11va": "libx264", # D3D11VA只用于解码 + "dxva2": "libx264", # DXVA2只用于解码 + "software": "libx264" +} + + +def get_null_input() -> str: + """ + 获取平台特定的空输入文件路径 + + Returns: + str: 平台特定的空输入路径 + """ + system = platform.system().lower() + if system == "windows": + return "NUL" + else: + return "/dev/null" + + +def create_test_video() -> str: + """ + 创建一个临时的测试视频文件,用于硬件加速测试 + + Returns: + str: 临时测试视频文件路径 + """ + try: + # 创建临时文件 + temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) + temp_path = temp_file.name + temp_file.close() + + # 生成一个简单的测试视频(1秒,黑色画面) + cmd = [ + 'ffmpeg', '-y', '-f', 'lavfi', '-i', 'color=black:size=320x240:duration=1', + '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-t', '1', temp_path + ] + + subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True) + return temp_path + except Exception as e: + logger.debug(f"创建测试视频失败: {str(e)}") + return get_null_input() + + +def cleanup_test_video(path: str) -> None: + """ + 清理测试视频文件 + + Args: + path: 测试视频文件路径 + """ + try: + if path != get_null_input() and os.path.exists(path): + os.unlink(path) + except Exception as e: + logger.debug(f"清理测试视频失败: {str(e)}") + def check_ffmpeg_installation() -> bool: """ @@ -38,9 +135,123 @@ def check_ffmpeg_installation() -> bool: return False +def detect_gpu_vendor() -> str: + """ + 检测GPU厂商 + + Returns: + str: GPU厂商 (nvidia, amd, intel, apple, unknown) + """ + system = platform.system().lower() + + try: + if system == "windows": + gpu_info = _get_windows_gpu_info().lower() + if 'nvidia' in gpu_info or 'geforce' in gpu_info or 'quadro' in gpu_info: + return "nvidia" + elif 'amd' in gpu_info or 'radeon' in gpu_info: + return "amd" + elif 'intel' in gpu_info: + return "intel" + elif system == "darwin": + # macOS上检查是否为Apple Silicon + if platform.machine().lower() in ['arm64', 'aarch64']: + return "apple" + else: + # Intel Mac,可能有独立显卡 + gpu_info = _get_macos_gpu_info().lower() + if 'nvidia' in gpu_info: + return "nvidia" + elif 'amd' in gpu_info or 'radeon' in gpu_info: + return "amd" + else: + return "intel" + elif system == "linux": + gpu_info = _get_linux_gpu_info().lower() + if 'nvidia' in gpu_info: + return "nvidia" + elif 'amd' in gpu_info or 'radeon' in gpu_info: + return "amd" + elif 'intel' in gpu_info: + return "intel" + except Exception as e: + logger.debug(f"检测GPU厂商失败: {str(e)}") + + return "unknown" + + +def test_hwaccel_method(method: str, test_input: str) -> bool: + """ + 测试特定的硬件加速方法 + + Args: + method: 硬件加速方法名称 + test_input: 测试输入文件路径 + + Returns: + bool: 是否支持该方法 + """ + try: + # 构建测试命令 + cmd = ["ffmpeg", "-hide_banner", "-loglevel", "error"] + + # 添加硬件加速参数 + if method == "cuda": + cmd.extend(["-hwaccel", "cuda", "-hwaccel_output_format", "cuda"]) + elif method == "nvenc": + cmd.extend(["-hwaccel", "cuda"]) + elif method == "videotoolbox": + cmd.extend(["-hwaccel", "videotoolbox"]) + elif method == "qsv": + cmd.extend(["-hwaccel", "qsv"]) + elif method == "vaapi": + # 尝试找到VAAPI设备 + render_device = _find_vaapi_device() + if render_device: + cmd.extend(["-hwaccel", "vaapi", "-vaapi_device", render_device]) + else: + cmd.extend(["-hwaccel", "vaapi"]) + elif method == "d3d11va": + cmd.extend(["-hwaccel", "d3d11va"]) + elif method == "dxva2": + cmd.extend(["-hwaccel", "dxva2"]) + elif method == "amf": + cmd.extend(["-hwaccel", "auto"]) # AMF通常通过auto检测 + else: + return False + + # 添加输入和输出 + cmd.extend(["-i", test_input, "-f", "null", "-t", "0.1", "-"]) + + # 执行测试 + result = subprocess.run( + cmd, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + text=True, + check=False, + timeout=10 # 10秒超时 + ) + + success = result.returncode == 0 + if success: + logger.debug(f"硬件加速方法 {method} 测试成功") + else: + logger.debug(f"硬件加速方法 {method} 测试失败: {result.stderr[:200]}") + + return success + + except subprocess.TimeoutExpired: + logger.debug(f"硬件加速方法 {method} 测试超时") + return False + except Exception as e: + logger.debug(f"硬件加速方法 {method} 测试异常: {str(e)}") + return False + + def detect_hardware_acceleration() -> Dict[str, Union[bool, str, List[str], None]]: """ - 检测系统可用的硬件加速器,并存储结果到全局变量 + 检测系统可用的硬件加速器,使用渐进式检测和智能降级 Returns: Dict: 包含硬件加速信息的字典 @@ -56,45 +267,176 @@ def detect_hardware_acceleration() -> Dict[str, Union[bool, str, List[str], None _FFMPEG_HW_ACCEL_INFO["message"] = "FFmpeg未安装或不在系统PATH中" return _FFMPEG_HW_ACCEL_INFO - # 检测操作系统 + # 检测平台和GPU信息 system = platform.system().lower() - logger.debug(f"检测硬件加速 - 操作系统: {system}") + gpu_vendor = detect_gpu_vendor() + + _FFMPEG_HW_ACCEL_INFO["platform"] = system + _FFMPEG_HW_ACCEL_INFO["gpu_vendor"] = gpu_vendor + + logger.info(f"检测硬件加速 - 平台: {system}, GPU厂商: {gpu_vendor}") # 获取FFmpeg支持的硬件加速器列表 try: - # 在Windows系统上使用UTF-8编码 - is_windows = os.name == 'nt' - if is_windows: - hwaccels_cmd = subprocess.run( - ['ffmpeg', '-hide_banner', '-hwaccels'], - stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8', text=True - ) - else: - hwaccels_cmd = subprocess.run( - ['ffmpeg', '-hide_banner', '-hwaccels'], - stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True - ) - supported_hwaccels = hwaccels_cmd.stdout.lower() + hwaccels_cmd = subprocess.run( + ['ffmpeg', '-hide_banner', '-hwaccels'], + stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=False + ) + supported_hwaccels = hwaccels_cmd.stdout.lower() if hwaccels_cmd.returncode == 0 else "" + logger.debug(f"FFmpeg支持的硬件加速器: {supported_hwaccels}") except Exception as e: - logger.error(f"获取FFmpeg硬件加速器列表失败: {str(e)}") + logger.warning(f"获取FFmpeg硬件加速器列表失败: {str(e)}") supported_hwaccels = "" - # 根据操作系统检测不同的硬件加速器 - if system == 'darwin': # macOS - _detect_macos_acceleration(supported_hwaccels) - elif system == 'windows': # Windows - _detect_windows_acceleration(supported_hwaccels) - elif system == 'linux': # Linux - _detect_linux_acceleration(supported_hwaccels) - else: - logger.warning(f"不支持的操作系统: {system}") - _FFMPEG_HW_ACCEL_INFO["message"] = f"不支持的操作系统: {system}" + # 创建测试输入 + test_input = create_test_video() - # 记录检测结果已经在启动时输出,这里不再重复输出 + try: + # 根据平台和GPU厂商获取优先级列表 + priority_list = HWACCEL_PRIORITY.get(system, {}).get(gpu_vendor, []) + if not priority_list: + priority_list = HWACCEL_PRIORITY.get(system, {}).get("unknown", []) + + logger.debug(f"硬件加速测试优先级: {priority_list}") + + # 按优先级测试硬件加速方法 + for method in priority_list: + # 检查FFmpeg是否支持该方法 + if method not in supported_hwaccels and method != "nvenc": # nvenc可能不在hwaccels列表中 + logger.debug(f"跳过不支持的硬件加速方法: {method}") + continue + + _FFMPEG_HW_ACCEL_INFO["tested_methods"].append(method) + + if test_hwaccel_method(method, test_input): + # 找到可用的硬件加速方法 + _FFMPEG_HW_ACCEL_INFO["available"] = True + _FFMPEG_HW_ACCEL_INFO["type"] = method + _FFMPEG_HW_ACCEL_INFO["encoder"] = ENCODER_MAPPING.get(method, "libx264") + + # 构建硬件加速参数 + if method == "cuda": + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "cuda", "-hwaccel_output_format", "cuda"] + elif method == "nvenc": + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "cuda"] + elif method == "videotoolbox": + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "videotoolbox"] + elif method == "qsv": + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "qsv"] + elif method == "vaapi": + render_device = _find_vaapi_device() + if render_device: + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "vaapi", "-vaapi_device", render_device] + else: + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "vaapi"] + elif method in ["d3d11va", "dxva2"]: + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", method] + elif method == "amf": + _FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "auto"] + + # 判断是否为独立GPU + _FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = gpu_vendor in ["nvidia", "amd"] or (gpu_vendor == "intel" and "arc" in _get_gpu_info().lower()) + + _FFMPEG_HW_ACCEL_INFO["message"] = f"使用 {method} 硬件加速 ({gpu_vendor} GPU)" + logger.info(f"硬件加速检测成功: {method} ({gpu_vendor})") + break + + # 如果没有找到硬件加速,设置软件编码作为备用 + if not _FFMPEG_HW_ACCEL_INFO["available"]: + _FFMPEG_HW_ACCEL_INFO["fallback_available"] = True + _FFMPEG_HW_ACCEL_INFO["fallback_encoder"] = "libx264" + _FFMPEG_HW_ACCEL_INFO["message"] = f"未找到可用的硬件加速,将使用软件编码 (平台: {system}, GPU: {gpu_vendor})" + logger.info("未检测到硬件加速,将使用软件编码") + + finally: + # 清理测试文件 + cleanup_test_video(test_input) return _FFMPEG_HW_ACCEL_INFO +def _get_gpu_info() -> str: + """ + 获取GPU信息的统一接口 + + Returns: + str: GPU信息字符串 + """ + system = platform.system().lower() + + if system == "windows": + return _get_windows_gpu_info() + elif system == "darwin": + return _get_macos_gpu_info() + elif system == "linux": + return _get_linux_gpu_info() + else: + return "unknown" + + +def _get_macos_gpu_info() -> str: + """ + 获取macOS系统的GPU信息 + + Returns: + str: GPU信息字符串 + """ + try: + # 使用system_profiler获取显卡信息 + result = subprocess.run( + ['system_profiler', 'SPDisplaysDataType'], + stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=False + ) + if result.returncode == 0: + return result.stdout + + # 备用方法:检查是否为Apple Silicon + if platform.machine().lower() in ['arm64', 'aarch64']: + return "Apple Silicon GPU" + else: + return "Intel Mac GPU" + except Exception as e: + logger.debug(f"获取macOS GPU信息失败: {str(e)}") + return "unknown" + + +def _find_vaapi_device() -> Optional[str]: + """ + 查找可用的VAAPI设备 + + Returns: + Optional[str]: VAAPI设备路径,如果没有找到则返回None + """ + try: + # 常见的VAAPI设备路径 + possible_devices = [ + "/dev/dri/renderD128", + "/dev/dri/renderD129", + "/dev/dri/card0", + "/dev/dri/card1" + ] + + for device in possible_devices: + if os.path.exists(device): + # 测试设备是否可用 + test_cmd = subprocess.run( + ["ffmpeg", "-hide_banner", "-loglevel", "error", + "-hwaccel", "vaapi", "-vaapi_device", device, + "-f", "lavfi", "-i", "color=black:size=64x64:duration=0.1", + "-f", "null", "-"], + stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False + ) + if test_cmd.returncode == 0: + logger.debug(f"找到可用的VAAPI设备: {device}") + return device + + logger.debug("未找到可用的VAAPI设备") + return None + except Exception as e: + logger.debug(f"查找VAAPI设备失败: {str(e)}") + return None + + def _detect_macos_acceleration(supported_hwaccels: str) -> None: """ 检测macOS系统的硬件加速 @@ -511,3 +853,165 @@ def is_dedicated_gpu() -> bool: detect_hardware_acceleration() return _FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] + + +def get_optimal_ffmpeg_encoder() -> str: + """ + 获取最优的FFmpeg编码器 + + Returns: + str: 编码器名称 + """ + # 如果还没有检测过,先进行检测 + if _FFMPEG_HW_ACCEL_INFO["type"] is None: + detect_hardware_acceleration() + + if _FFMPEG_HW_ACCEL_INFO["available"]: + return _FFMPEG_HW_ACCEL_INFO["encoder"] + elif _FFMPEG_HW_ACCEL_INFO["fallback_available"]: + return _FFMPEG_HW_ACCEL_INFO["fallback_encoder"] + else: + return "libx264" # 默认软件编码器 + + +def get_ffmpeg_command_with_hwaccel(input_path: str, output_path: str, **kwargs) -> List[str]: + """ + 生成带有硬件加速的FFmpeg命令 + + Args: + input_path: 输入文件路径 + output_path: 输出文件路径 + **kwargs: 其他FFmpeg参数 + + Returns: + List[str]: FFmpeg命令列表 + """ + # 如果还没有检测过,先进行检测 + if _FFMPEG_HW_ACCEL_INFO["type"] is None: + detect_hardware_acceleration() + + cmd = ["ffmpeg", "-y"] + + # 添加硬件加速参数 + if _FFMPEG_HW_ACCEL_INFO["available"]: + cmd.extend(_FFMPEG_HW_ACCEL_INFO["hwaccel_args"]) + + # 添加输入文件 + cmd.extend(["-i", input_path]) + + # 添加编码器 + encoder = get_optimal_ffmpeg_encoder() + cmd.extend(["-c:v", encoder]) + + # 添加其他参数 + for key, value in kwargs.items(): + if key.startswith("_"): # 跳过内部参数 + continue + if isinstance(value, list): + cmd.extend(value) + else: + cmd.extend([f"-{key}", str(value)]) + + # 添加输出文件 + cmd.append(output_path) + + return cmd + + +def test_ffmpeg_compatibility() -> Dict[str, any]: + """ + 测试FFmpeg兼容性并返回详细报告 + + Returns: + Dict: 兼容性测试报告 + """ + report = { + "ffmpeg_installed": False, + "platform": platform.system().lower(), + "gpu_vendor": "unknown", + "hardware_acceleration": { + "available": False, + "type": None, + "encoder": None, + "tested_methods": [] + }, + "software_fallback": { + "available": False, + "encoder": "libx264" + }, + "recommendations": [] + } + + # 检查FFmpeg安装 + report["ffmpeg_installed"] = check_ffmpeg_installation() + if not report["ffmpeg_installed"]: + report["recommendations"].append("请安装FFmpeg并确保其在系统PATH中") + return report + + # 检测硬件加速 + hwaccel_info = detect_hardware_acceleration() + report["gpu_vendor"] = hwaccel_info.get("gpu_vendor", "unknown") + report["hardware_acceleration"]["available"] = hwaccel_info.get("available", False) + report["hardware_acceleration"]["type"] = hwaccel_info.get("type") + report["hardware_acceleration"]["encoder"] = hwaccel_info.get("encoder") + report["hardware_acceleration"]["tested_methods"] = hwaccel_info.get("tested_methods", []) + + # 检查软件备用方案 + report["software_fallback"]["available"] = hwaccel_info.get("fallback_available", True) + report["software_fallback"]["encoder"] = hwaccel_info.get("fallback_encoder", "libx264") + + # 生成建议 + if not report["hardware_acceleration"]["available"]: + if report["gpu_vendor"] == "nvidia": + report["recommendations"].append("建议安装NVIDIA驱动和CUDA工具包以启用硬件加速") + elif report["gpu_vendor"] == "amd": + report["recommendations"].append("AMD显卡硬件加速支持有限,建议使用软件编码") + elif report["gpu_vendor"] == "intel": + report["recommendations"].append("建议更新Intel显卡驱动以启用QSV硬件加速") + else: + report["recommendations"].append("未检测到支持的GPU,将使用软件编码") + + return report + + +def force_software_encoding() -> None: + """ + 强制使用软件编码,禁用硬件加速 + """ + global _FFMPEG_HW_ACCEL_INFO + + _FFMPEG_HW_ACCEL_INFO.update({ + "available": False, + "type": "software", + "encoder": "libx264", + "hwaccel_args": [], + "message": "强制使用软件编码", + "is_dedicated_gpu": False, + "fallback_available": True, + "fallback_encoder": "libx264" + }) + + logger.info("已强制切换到软件编码模式") + + +def reset_hwaccel_detection() -> None: + """ + 重置硬件加速检测结果,强制重新检测 + """ + global _FFMPEG_HW_ACCEL_INFO + + _FFMPEG_HW_ACCEL_INFO = { + "available": False, + "type": None, + "encoder": None, + "hwaccel_args": [], + "message": "", + "is_dedicated_gpu": False, + "fallback_available": False, + "fallback_encoder": None, + "platform": None, + "gpu_vendor": None, + "tested_methods": [] + } + + logger.info("已重置硬件加速检测结果")