mirror of
https://github.com/linyqh/NarratoAI.git
synced 2026-01-11 18:08:11 +00:00
feat: 修复 windows 环境下 短剧混剪 报错 bug,添加字幕文本处理模块,优化字幕读取和规范化逻辑
This commit is contained in:
parent
08f682bb50
commit
0706b00577
@ -15,6 +15,7 @@ from typing import Dict, Any, Optional
|
||||
from loguru import logger
|
||||
from app.config import config
|
||||
from app.utils.utils import get_uuid, storage_dir
|
||||
from app.services.subtitle_text import read_subtitle_text
|
||||
# 导入新的提示词管理系统
|
||||
from app.services.prompts import PromptManager
|
||||
|
||||
@ -309,8 +310,13 @@ class SubtitleAnalyzer:
|
||||
}
|
||||
|
||||
# 读取文件内容
|
||||
with open(subtitle_file_path, 'r', encoding='utf-8') as f:
|
||||
subtitle_content = f.read()
|
||||
subtitle_content = read_subtitle_text(subtitle_file_path).text
|
||||
if not subtitle_content:
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"字幕文件内容为空或无法读取: {subtitle_file_path}",
|
||||
"temperature": self.temperature
|
||||
}
|
||||
|
||||
# 分析字幕
|
||||
return self.analyze_subtitle(subtitle_content)
|
||||
|
||||
@ -5,7 +5,7 @@ import traceback
|
||||
import json
|
||||
from loguru import logger
|
||||
|
||||
from .utils import load_srt, load_srt_from_content
|
||||
from app.services.subtitle_text import has_timecodes, normalize_subtitle_text, read_subtitle_text
|
||||
# 导入新的提示词管理系统
|
||||
from app.services.prompts import PromptManager
|
||||
# 导入统一LLM服务
|
||||
@ -38,30 +38,41 @@ def analyze_subtitle(
|
||||
dict: 包含剧情梗概和结构化的时间段分析的字典
|
||||
"""
|
||||
try:
|
||||
# 加载字幕文件或内容
|
||||
if subtitle_content and subtitle_content.strip():
|
||||
subtitles = load_srt_from_content(subtitle_content)
|
||||
# 读取并规范化字幕文本(不依赖结构化 SRT 解析,提升兼容性)
|
||||
if subtitle_content and str(subtitle_content).strip():
|
||||
normalized_subtitle_text = normalize_subtitle_text(subtitle_content)
|
||||
source_label = "字幕内容(直接传入)"
|
||||
elif srt_path:
|
||||
subtitles = load_srt(srt_path)
|
||||
source_label = f"字幕文件: {srt_path}"
|
||||
decoded = read_subtitle_text(srt_path)
|
||||
normalized_subtitle_text = decoded.text
|
||||
source_label = f"字幕文件: {srt_path} (encoding: {decoded.encoding})"
|
||||
else:
|
||||
raise ValueError("必须提供 srt_path 或 subtitle_content 参数")
|
||||
|
||||
# 检查字幕是否为空
|
||||
if not subtitles:
|
||||
# 基础校验:必须有内容且包含可用于定位的时间码
|
||||
if not normalized_subtitle_text or len(normalized_subtitle_text.strip()) < 10:
|
||||
error_msg = (
|
||||
f"字幕来源 [{source_label}] 解析后无有效内容。\n"
|
||||
f"字幕来源 [{source_label}] 内容为空或过短。\n"
|
||||
f"请检查:\n"
|
||||
f"1. 文件格式是否为标准 SRT\n"
|
||||
f"2. 文件编码是否为 UTF-8、GBK 或 GB2312\n"
|
||||
f"2. 文件编码是否为 UTF-8、UTF-16、GBK 或 GB2312\n"
|
||||
f"3. 文件内容是否为空"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
logger.info(f"成功加载字幕来源 [{source_label}],共 {len(subtitles)} 条有效字幕")
|
||||
subtitle_content = "\n".join([f"{sub['timestamp']}\n{sub['text']}" for sub in subtitles])
|
||||
if not has_timecodes(normalized_subtitle_text):
|
||||
error_msg = (
|
||||
f"字幕来源 [{source_label}] 未检测到有效时间码,无法进行时间段定位。\n"
|
||||
f"请确保字幕包含类似以下格式的时间轴:\n"
|
||||
f"00:00:01,000 --> 00:00:02,000\n"
|
||||
f"(若毫秒分隔符为'.',系统会自动规范化为',')"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
logger.info(f"成功加载字幕来源 [{source_label}],字符数: {len(normalized_subtitle_text)}")
|
||||
subtitle_content = normalized_subtitle_text
|
||||
|
||||
# 如果没有指定provider,根据model_name推断
|
||||
if not provider:
|
||||
@ -107,11 +118,11 @@ def analyze_subtitle(
|
||||
raise Exception("无法解析LLM返回的JSON数据")
|
||||
|
||||
logger.info(f"字幕分析完成,找到 {len(summary_data.get('plot_titles', []))} 个关键情节")
|
||||
print(json.dumps(summary_data, indent=4, ensure_ascii=False))
|
||||
logger.debug(json.dumps(summary_data, indent=4, ensure_ascii=False))
|
||||
|
||||
# 构建爆点标题列表
|
||||
plot_titles_text = ""
|
||||
print(f"找到 {len(summary_data['plot_titles'])} 个片段")
|
||||
logger.info(f"找到 {len(summary_data.get('plot_titles', []))} 个片段")
|
||||
for i, point in enumerate(summary_data['plot_titles'], 1):
|
||||
plot_titles_text += f"{i}. {point}\n"
|
||||
|
||||
@ -159,4 +170,3 @@ def analyze_subtitle(
|
||||
except Exception as e:
|
||||
logger.error(f"分析字幕时发生错误: {str(e)}")
|
||||
raise Exception(f"分析字幕时发生错误:{str(e)}\n{traceback.format_exc()}")
|
||||
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
"""
|
||||
import os
|
||||
import json
|
||||
from typing import List, Dict, Tuple
|
||||
from typing import Dict, List
|
||||
|
||||
|
||||
def merge_script(
|
||||
@ -19,38 +19,12 @@ def merge_script(
|
||||
Returns:
|
||||
str: 最终合并的脚本
|
||||
"""
|
||||
def parse_timestamp(ts: str) -> Tuple[float, float]:
|
||||
"""解析时间戳,返回开始和结束时间(秒)"""
|
||||
start, end = ts.split('-')
|
||||
|
||||
def parse_time(time_str: str) -> float:
|
||||
time_str = time_str.strip()
|
||||
if ',' in time_str:
|
||||
time_parts, ms_parts = time_str.split(',')
|
||||
ms = float(ms_parts) / 1000
|
||||
else:
|
||||
time_parts = time_str
|
||||
ms = 0
|
||||
|
||||
hours, minutes, seconds = map(int, time_parts.split(':'))
|
||||
return hours * 3600 + minutes * 60 + seconds + ms
|
||||
|
||||
return parse_time(start), parse_time(end)
|
||||
|
||||
def format_timestamp(seconds: float) -> str:
|
||||
"""将秒数转换为时间戳格式 HH:MM:SS"""
|
||||
hours = int(seconds // 3600)
|
||||
minutes = int((seconds % 3600) // 60)
|
||||
secs = int(seconds % 60)
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
# 创建包含所有信息的临时列表
|
||||
final_script = []
|
||||
|
||||
# 处理原生画面条目
|
||||
number = 1
|
||||
for plot_point in plot_points:
|
||||
start, end = parse_timestamp(plot_point["timestamp"])
|
||||
script_item = {
|
||||
"_id": number,
|
||||
"timestamp": plot_point["timestamp"],
|
||||
@ -62,6 +36,11 @@ def merge_script(
|
||||
number += 1
|
||||
|
||||
# 保存结果
|
||||
if not output_path or not str(output_path).strip():
|
||||
raise ValueError("output_path不能为空")
|
||||
|
||||
output_path = str(output_path)
|
||||
os.makedirs(os.path.dirname(output_path) or ".", exist_ok=True)
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(final_script, f, ensure_ascii=False, indent=4)
|
||||
|
||||
|
||||
124
app/services/subtitle_text.py
Normal file
124
app/services/subtitle_text.py
Normal file
@ -0,0 +1,124 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
"""
|
||||
Subtitle text utilities.
|
||||
|
||||
This module provides a shared, cross-platform way to read and normalize subtitle
|
||||
content. Both Short Drama Editing (混剪) and Short Drama Narration (解说) should
|
||||
consume subtitle content through this module to avoid platform-specific parsing
|
||||
issues (e.g. Windows UTF-16 SRT, timestamp separators, etc.).
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, Optional
|
||||
|
||||
|
||||
_SRT_TIME_RE = re.compile(
|
||||
r"\b\d{2}:\d{2}:\d{2}(?:[,.]\d{3})?\s*-->\s*\d{2}:\d{2}:\d{2}(?:[,.]\d{3})?\b"
|
||||
)
|
||||
_SRT_MS_DOT_RE = re.compile(r"(\b\d{2}:\d{2}:\d{2})\.(\d{3}\b)")
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class DecodedSubtitle:
|
||||
text: str
|
||||
encoding: str
|
||||
|
||||
|
||||
def has_timecodes(text: str) -> bool:
|
||||
"""Return True if the subtitle text contains at least one SRT timecode."""
|
||||
if not text:
|
||||
return False
|
||||
return _SRT_TIME_RE.search(text) is not None
|
||||
|
||||
|
||||
def normalize_subtitle_text(text: str) -> str:
|
||||
"""
|
||||
Normalize subtitle text to improve cross-platform reliability.
|
||||
|
||||
- Unifies line endings to LF
|
||||
- Removes BOM and NUL bytes
|
||||
- Normalizes millisecond separators from '.' to ',' in timecodes
|
||||
"""
|
||||
if text is None:
|
||||
return ""
|
||||
|
||||
normalized = str(text)
|
||||
|
||||
# Strip BOM.
|
||||
if normalized.startswith("\ufeff"):
|
||||
normalized = normalized.lstrip("\ufeff")
|
||||
|
||||
# Remove NUL bytes (common when UTF-16 is mis-decoded elsewhere).
|
||||
normalized = normalized.replace("\x00", "")
|
||||
|
||||
# Normalize newlines.
|
||||
normalized = normalized.replace("\r\n", "\n").replace("\r", "\n")
|
||||
|
||||
# Normalize timestamp millisecond separator: 00:00:01.000 -> 00:00:01,000
|
||||
normalized = _SRT_MS_DOT_RE.sub(r"\1,\2", normalized)
|
||||
|
||||
return normalized.strip()
|
||||
|
||||
|
||||
def decode_subtitle_bytes(
|
||||
data: bytes,
|
||||
*,
|
||||
encodings: Optional[Iterable[str]] = None,
|
||||
) -> DecodedSubtitle:
|
||||
"""
|
||||
Decode subtitle bytes using a small set of common encodings.
|
||||
|
||||
Preference is given to decodings that yield detectable SRT timecodes.
|
||||
"""
|
||||
if data is None:
|
||||
return DecodedSubtitle(text="", encoding="utf-8")
|
||||
|
||||
candidates = list(encodings) if encodings else [
|
||||
"utf-8",
|
||||
"utf-8-sig",
|
||||
"utf-16",
|
||||
"utf-16-le",
|
||||
"utf-16-be",
|
||||
"gbk",
|
||||
"gb2312",
|
||||
]
|
||||
|
||||
decoded_results: list[DecodedSubtitle] = []
|
||||
for encoding in candidates:
|
||||
try:
|
||||
decoded_text = data.decode(encoding)
|
||||
except UnicodeDecodeError:
|
||||
continue
|
||||
decoded_results.append(
|
||||
DecodedSubtitle(text=normalize_subtitle_text(decoded_text), encoding=encoding)
|
||||
)
|
||||
|
||||
# Fast path: if we already see timecodes, keep the first such decode.
|
||||
if has_timecodes(decoded_results[-1].text):
|
||||
return decoded_results[-1]
|
||||
|
||||
if decoded_results:
|
||||
# Fall back to the first successful decoding.
|
||||
return decoded_results[0]
|
||||
|
||||
# Last resort: replace undecodable bytes.
|
||||
return DecodedSubtitle(text=normalize_subtitle_text(data.decode("utf-8", errors="replace")), encoding="utf-8")
|
||||
|
||||
|
||||
def read_subtitle_text(file_path: str) -> DecodedSubtitle:
|
||||
"""Read subtitle file from disk, decode and normalize its text."""
|
||||
if not file_path or not str(file_path).strip():
|
||||
return DecodedSubtitle(text="", encoding="utf-8")
|
||||
|
||||
normalized_path = os.path.abspath(str(file_path))
|
||||
with open(normalized_path, "rb") as f:
|
||||
data = f.read()
|
||||
|
||||
return decode_subtitle_bytes(data)
|
||||
|
||||
@ -8,6 +8,7 @@ from loguru import logger
|
||||
|
||||
from app.config import config
|
||||
from app.models.schema import VideoClipParams
|
||||
from app.services.subtitle_text import decode_subtitle_bytes
|
||||
from app.utils import utils, check_script
|
||||
from webui.tools.generate_script_docu import generate_script_docu
|
||||
from webui.tools.generate_script_short import generate_script_short
|
||||
@ -190,8 +191,9 @@ def render_script_file(tr, params):
|
||||
json_data = json.loads(script_content)
|
||||
|
||||
# 保存到脚本目录
|
||||
script_file_path = os.path.join(script_dir, uploaded_file.name)
|
||||
file_name, file_extension = os.path.splitext(uploaded_file.name)
|
||||
safe_filename = os.path.basename(uploaded_file.name)
|
||||
script_file_path = os.path.join(script_dir, safe_filename)
|
||||
file_name, file_extension = os.path.splitext(safe_filename)
|
||||
|
||||
# 如果文件已存在,添加时间戳
|
||||
if os.path.exists(script_file_path):
|
||||
@ -250,8 +252,9 @@ def render_video_file(tr, params):
|
||||
)
|
||||
|
||||
if uploaded_file is not None:
|
||||
video_file_path = os.path.join(utils.video_dir(), uploaded_file.name)
|
||||
file_name, file_extension = os.path.splitext(uploaded_file.name)
|
||||
safe_filename = os.path.basename(uploaded_file.name)
|
||||
video_file_path = os.path.join(utils.video_dir(), safe_filename)
|
||||
file_name, file_extension = os.path.splitext(safe_filename)
|
||||
|
||||
if os.path.exists(video_file_path):
|
||||
timestamp = time.strftime("%Y%m%d%H%M%S")
|
||||
@ -337,6 +340,7 @@ def short_drama_summary(tr):
|
||||
st.info(f"已上传字幕: {os.path.basename(st.session_state['subtitle_path'])}")
|
||||
if st.button(tr("清除已上传字幕")):
|
||||
st.session_state['subtitle_path'] = None
|
||||
st.session_state['subtitle_content'] = None
|
||||
st.session_state['subtitle_file_processed'] = False
|
||||
st.rerun()
|
||||
|
||||
@ -346,22 +350,12 @@ def short_drama_summary(tr):
|
||||
# 清理文件名,防止路径污染和路径遍历攻击
|
||||
safe_filename = os.path.basename(subtitle_file.name)
|
||||
|
||||
# 编码自动检测:依次尝试常见编码
|
||||
encodings = ['utf-8', 'utf-8-sig', 'gbk', 'gb2312']
|
||||
script_content = None
|
||||
detected_encoding = None
|
||||
decoded = decode_subtitle_bytes(subtitle_file.getvalue())
|
||||
script_content = decoded.text
|
||||
detected_encoding = decoded.encoding
|
||||
|
||||
for encoding in encodings:
|
||||
try:
|
||||
subtitle_file.seek(0) # 重置文件指针
|
||||
script_content = subtitle_file.read().decode(encoding)
|
||||
detected_encoding = encoding
|
||||
break
|
||||
except UnicodeDecodeError:
|
||||
continue
|
||||
|
||||
if script_content is None:
|
||||
st.error(tr("无法读取字幕文件,请检查文件编码(支持 UTF-8、GBK、GB2312)"))
|
||||
if not script_content:
|
||||
st.error(tr("无法读取字幕文件,请检查文件编码(支持 UTF-8、UTF-16、GBK、GB2312)"))
|
||||
st.stop()
|
||||
|
||||
# 验证字幕内容(简单检查)
|
||||
@ -389,6 +383,7 @@ def short_drama_summary(tr):
|
||||
f"大小: {len(script_content)} 字符)"
|
||||
)
|
||||
st.session_state['subtitle_path'] = script_file_path
|
||||
st.session_state['subtitle_content'] = script_content
|
||||
st.session_state['subtitle_file_processed'] = True # 标记已处理
|
||||
|
||||
# 避免使用rerun,使用更新状态的方式
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import traceback
|
||||
@ -6,6 +7,7 @@ from loguru import logger
|
||||
|
||||
from app.config import config
|
||||
from app.services.upload_validation import ensure_existing_file, InputValidationError
|
||||
from app.utils import utils
|
||||
|
||||
|
||||
def generate_script_short(tr, params, custom_clips=5):
|
||||
@ -81,14 +83,23 @@ def generate_script_short(tr, params, custom_clips=5):
|
||||
# ========== 调用后端生成脚本 ==========
|
||||
from app.services.SDP.generate_script_short import generate_script_result
|
||||
|
||||
output_path = os.path.join(utils.script_dir(), "merged_subtitle.json")
|
||||
|
||||
subtitle_content = st.session_state.get("subtitle_content")
|
||||
subtitle_kwargs = (
|
||||
{"subtitle_content": str(subtitle_content)}
|
||||
if subtitle_content is not None and str(subtitle_content).strip()
|
||||
else {"subtitle_file_path": subtitle_path}
|
||||
)
|
||||
|
||||
result = generate_script_result(
|
||||
api_key=text_api_key,
|
||||
model_name=text_model,
|
||||
output_path="resource/scripts/merged_subtitle.json",
|
||||
output_path=output_path,
|
||||
base_url=text_base_url,
|
||||
custom_clips=custom_clips,
|
||||
provider=text_provider,
|
||||
subtitle_file_path=subtitle_path,
|
||||
**subtitle_kwargs,
|
||||
)
|
||||
|
||||
if result.get("status") != "success":
|
||||
|
||||
@ -16,6 +16,7 @@ from loguru import logger
|
||||
|
||||
from app.config import config
|
||||
from app.services.SDE.short_drama_explanation import analyze_subtitle, generate_narration_script
|
||||
from app.services.subtitle_text import read_subtitle_text
|
||||
# 导入新的LLM服务模块 - 确保提供商被注册
|
||||
import app.services.llm # 这会触发提供商注册
|
||||
from app.services.llm.migration_adapter import SubtitleAnalyzerAdapter
|
||||
@ -173,8 +174,10 @@ def generate_script_short_sunmmary(params, subtitle_path, video_theme, temperatu
|
||||
text_base_url = config.app.get(f'text_{text_provider}_base_url')
|
||||
|
||||
# 读取字幕文件内容(无论使用哪种实现都需要)
|
||||
with open(subtitle_path, 'r', encoding='utf-8') as f:
|
||||
subtitle_content = f.read()
|
||||
subtitle_content = read_subtitle_text(subtitle_path).text
|
||||
if not subtitle_content:
|
||||
st.error("字幕文件内容为空或无法读取")
|
||||
return
|
||||
|
||||
try:
|
||||
# 优先使用新的LLM服务架构
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user