FramePack-F1 is the framepack with forward-only sampling. A GitHub discussion will be posted soon to describe it. The model is trained with a new regulation approach for anti-drifting. This regulation will be uploaded to arxiv soon.
391 lines
18 KiB
Python
391 lines
18 KiB
Python
from diffusers_helper.hf_login import login
|
|
|
|
import os
|
|
|
|
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
|
|
|
import gradio as gr
|
|
import torch
|
|
import traceback
|
|
import einops
|
|
import safetensors.torch as sf
|
|
import numpy as np
|
|
import argparse
|
|
import math
|
|
|
|
from PIL import Image
|
|
from diffusers import AutoencoderKLHunyuanVideo
|
|
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
|
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
|
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
|
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
|
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
|
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
|
from diffusers_helper.thread_utils import AsyncStream, async_run
|
|
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
|
from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
|
from diffusers_helper.bucket_tools import find_nearest_bucket
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--share', action='store_true')
|
|
parser.add_argument("--server", type=str, default='0.0.0.0')
|
|
parser.add_argument("--port", type=int, required=False)
|
|
parser.add_argument("--inbrowser", action='store_true')
|
|
args = parser.parse_args()
|
|
|
|
# for win desktop probably use --server 127.0.0.1 --inbrowser
|
|
# For linux server probably use --server 127.0.0.1 or do not use any cmd flags
|
|
|
|
print(args)
|
|
|
|
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
|
high_vram = free_mem_gb > 60
|
|
|
|
print(f'Free VRAM {free_mem_gb} GB')
|
|
print(f'High-VRAM Mode: {high_vram}')
|
|
|
|
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
|
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
|
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
|
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
|
|
|
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
|
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
|
|
|
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
|
|
|
|
vae.eval()
|
|
text_encoder.eval()
|
|
text_encoder_2.eval()
|
|
image_encoder.eval()
|
|
transformer.eval()
|
|
|
|
if not high_vram:
|
|
vae.enable_slicing()
|
|
vae.enable_tiling()
|
|
|
|
transformer.high_quality_fp32_output_for_inference = True
|
|
print('transformer.high_quality_fp32_output_for_inference = True')
|
|
|
|
transformer.to(dtype=torch.bfloat16)
|
|
vae.to(dtype=torch.float16)
|
|
image_encoder.to(dtype=torch.float16)
|
|
text_encoder.to(dtype=torch.float16)
|
|
text_encoder_2.to(dtype=torch.float16)
|
|
|
|
vae.requires_grad_(False)
|
|
text_encoder.requires_grad_(False)
|
|
text_encoder_2.requires_grad_(False)
|
|
image_encoder.requires_grad_(False)
|
|
transformer.requires_grad_(False)
|
|
|
|
if not high_vram:
|
|
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
|
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
|
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
|
else:
|
|
text_encoder.to(gpu)
|
|
text_encoder_2.to(gpu)
|
|
image_encoder.to(gpu)
|
|
vae.to(gpu)
|
|
transformer.to(gpu)
|
|
|
|
stream = AsyncStream()
|
|
|
|
outputs_folder = './outputs/'
|
|
os.makedirs(outputs_folder, exist_ok=True)
|
|
|
|
|
|
@torch.no_grad()
|
|
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
|
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
|
total_latent_sections = int(max(round(total_latent_sections), 1))
|
|
|
|
job_id = generate_timestamp()
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
|
|
|
try:
|
|
# Clean GPU
|
|
if not high_vram:
|
|
unload_complete_models(
|
|
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
|
)
|
|
|
|
# Text encoding
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
|
|
|
if not high_vram:
|
|
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
|
load_model_as_complete(text_encoder_2, target_device=gpu)
|
|
|
|
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
if cfg == 1:
|
|
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
|
else:
|
|
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
|
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
|
|
|
# Processing input image
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
|
|
|
H, W, C = input_image.shape
|
|
height, width = find_nearest_bucket(H, W, resolution=640)
|
|
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
|
|
|
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
|
|
|
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
|
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
|
|
|
# VAE encoding
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
|
|
|
if not high_vram:
|
|
load_model_as_complete(vae, target_device=gpu)
|
|
|
|
start_latent = vae_encode(input_image_pt, vae)
|
|
|
|
# CLIP Vision
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
|
|
|
if not high_vram:
|
|
load_model_as_complete(image_encoder, target_device=gpu)
|
|
|
|
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
|
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
|
|
|
# Dtype
|
|
|
|
llama_vec = llama_vec.to(transformer.dtype)
|
|
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
|
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
|
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
|
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
|
|
|
# Sampling
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
|
|
|
rnd = torch.Generator("cpu").manual_seed(seed)
|
|
|
|
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
|
history_pixels = None
|
|
|
|
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
|
total_generated_latent_frames = 1
|
|
|
|
for section_index in range(total_latent_sections):
|
|
if stream.input_queue.top() == 'end':
|
|
stream.output_queue.push(('end', None))
|
|
return
|
|
|
|
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
|
|
|
if not high_vram:
|
|
unload_complete_models()
|
|
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
|
|
|
if use_teacache:
|
|
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
|
else:
|
|
transformer.initialize_teacache(enable_teacache=False)
|
|
|
|
def callback(d):
|
|
preview = d['denoised']
|
|
preview = vae_decode_fake(preview)
|
|
|
|
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
|
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
|
|
|
if stream.input_queue.top() == 'end':
|
|
stream.output_queue.push(('end', None))
|
|
raise KeyboardInterrupt('User ends the task.')
|
|
|
|
current_step = d['i'] + 1
|
|
percentage = int(100.0 * current_step / steps)
|
|
hint = f'Sampling {current_step}/{steps}'
|
|
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
|
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
|
return
|
|
|
|
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
|
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
|
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
|
|
|
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
|
|
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
|
|
|
generated_latents = sample_hunyuan(
|
|
transformer=transformer,
|
|
sampler='unipc',
|
|
width=width,
|
|
height=height,
|
|
frames=latent_window_size * 4 - 3,
|
|
real_guidance_scale=cfg,
|
|
distilled_guidance_scale=gs,
|
|
guidance_rescale=rs,
|
|
# shift=3.0,
|
|
num_inference_steps=steps,
|
|
generator=rnd,
|
|
prompt_embeds=llama_vec,
|
|
prompt_embeds_mask=llama_attention_mask,
|
|
prompt_poolers=clip_l_pooler,
|
|
negative_prompt_embeds=llama_vec_n,
|
|
negative_prompt_embeds_mask=llama_attention_mask_n,
|
|
negative_prompt_poolers=clip_l_pooler_n,
|
|
device=gpu,
|
|
dtype=torch.bfloat16,
|
|
image_embeddings=image_encoder_last_hidden_state,
|
|
latent_indices=latent_indices,
|
|
clean_latents=clean_latents,
|
|
clean_latent_indices=clean_latent_indices,
|
|
clean_latents_2x=clean_latents_2x,
|
|
clean_latent_2x_indices=clean_latent_2x_indices,
|
|
clean_latents_4x=clean_latents_4x,
|
|
clean_latent_4x_indices=clean_latent_4x_indices,
|
|
callback=callback,
|
|
)
|
|
|
|
total_generated_latent_frames += int(generated_latents.shape[2])
|
|
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
|
|
|
if not high_vram:
|
|
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
|
load_model_as_complete(vae, target_device=gpu)
|
|
|
|
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
|
|
|
if history_pixels is None:
|
|
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
|
else:
|
|
section_latent_frames = latent_window_size * 2
|
|
overlapped_frames = latent_window_size * 4 - 3
|
|
|
|
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
|
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
|
|
|
if not high_vram:
|
|
unload_complete_models()
|
|
|
|
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
|
|
|
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
|
|
|
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
|
|
|
stream.output_queue.push(('file', output_filename))
|
|
except:
|
|
traceback.print_exc()
|
|
|
|
if not high_vram:
|
|
unload_complete_models(
|
|
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
|
)
|
|
|
|
stream.output_queue.push(('end', None))
|
|
return
|
|
|
|
|
|
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
|
global stream
|
|
assert input_image is not None, 'No input image!'
|
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
stream = AsyncStream()
|
|
|
|
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
|
|
|
output_filename = None
|
|
|
|
while True:
|
|
flag, data = stream.output_queue.next()
|
|
|
|
if flag == 'file':
|
|
output_filename = data
|
|
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
if flag == 'progress':
|
|
preview, desc, html = data
|
|
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
if flag == 'end':
|
|
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
|
break
|
|
|
|
|
|
def end_process():
|
|
stream.input_queue.push('end')
|
|
|
|
|
|
quick_prompts = [
|
|
'The girl dances gracefully, with clear movements, full of charm.',
|
|
'A character doing some simple body movements.',
|
|
]
|
|
quick_prompts = [[x] for x in quick_prompts]
|
|
|
|
|
|
css = make_progress_bar_css()
|
|
block = gr.Blocks(css=css).queue()
|
|
with block:
|
|
gr.Markdown('# FramePack-F1')
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
|
prompt = gr.Textbox(label="Prompt", value='')
|
|
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
|
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
|
|
|
with gr.Row():
|
|
start_button = gr.Button(value="Start Generation")
|
|
end_button = gr.Button(value="End Generation", interactive=False)
|
|
|
|
with gr.Group():
|
|
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
|
|
|
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
|
seed = gr.Number(label="Seed", value=31337, precision=0)
|
|
|
|
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
|
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
|
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
|
|
|
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
|
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
|
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
|
|
|
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
|
|
|
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
|
|
|
with gr.Column():
|
|
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
|
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
|
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
|
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
|
|
|
gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
|
|
|
|
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
|
|
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
|
end_button.click(fn=end_process)
|
|
|
|
|
|
block.launch(
|
|
server_name=args.server,
|
|
server_port=args.port,
|
|
share=args.share,
|
|
inbrowser=args.inbrowser,
|
|
)
|